IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i2p629-641.html
   My bibliography  Save this article

Bayesian inference for stationary points in Gaussian process regression models for event‐related potentials analysis

Author

Listed:
  • Cheng‐Han Yu
  • Meng Li
  • Colin Noe
  • Simon Fischer‐Baum
  • Marina Vannucci

Abstract

Stationary points embedded in the derivatives are often critical for a model to be interpretable and may be considered as key features of interest in many applications. We propose a semiparametric Bayesian model to efficiently infer the locations of stationary points of a nonparametric function, which also produces an estimate of the function. We use Gaussian processes as a flexible prior for the underlying function and impose derivative constraints to control the function's shape via conditioning. We develop an inferential strategy that intentionally restricts estimation to the case of at least one stationary point, bypassing possible mis‐specifications in the number of stationary points and avoiding the varying dimension problem that often brings in computational complexity. We illustrate the proposed methods using simulations and then apply the method to the estimation of event‐related potentials derived from electroencephalography (EEG) signals. We show how the proposed method automatically identifies characteristic components and their latencies at the individual level, which avoids the excessive averaging across subjects that is routinely done in the field to obtain smooth curves. By applying this approach to EEG data collected from younger and older adults during a speech perception task, we are able to demonstrate how the time course of speech perception processes changes with age.

Suggested Citation

  • Cheng‐Han Yu & Meng Li & Colin Noe & Simon Fischer‐Baum & Marina Vannucci, 2023. "Bayesian inference for stationary points in Gaussian process regression models for event‐related potentials analysis," Biometrics, The International Biometric Society, vol. 79(2), pages 629-641, June.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:629-641
    DOI: 10.1111/biom.13621
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13621
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13621?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ghosal,Subhashis & van der Vaart,Aad, 2017. "Fundamentals of Nonparametric Bayesian Inference," Cambridge Books, Cambridge University Press, number 9780521878265, January.
    2. Peter X.-K. Song & Xin Gao & Rui Liu & Wen Le, 2006. "Nonparametric Inference for Local Extrema with Application to Oligonucleotide Microarray Data in Yeast Genome," Biometrics, The International Biometric Society, vol. 62(2), pages 545-554, June.
    3. Matthew K. Leonard & Maxime O. Baud & Matthias J. Sjerps & Edward F. Chang, 2016. "Perceptual restoration of masked speech in human cortex," Nature Communications, Nature, vol. 7(1), pages 1-9, December.
    4. repec:bla:biomet:v:71:y:2015:i:4:p:1090-1100 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2023. "Forecasting with a panel Tobit model," Quantitative Economics, Econometric Society, vol. 14(1), pages 117-159, January.
    2. Qianwen Tan & Subhashis Ghosal, 2021. "Bayesian Analysis of Mixed-effect Regression Models Driven by Ordinary Differential Equations," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 3-29, May.
    3. Jaeho Kim & Le Wang, 2019. "Hidden group patterns in democracy developments: Bayesian inference for grouped heterogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(6), pages 1016-1028, September.
    4. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    5. A Stefano Caria & Grant Gordon & Maximilian Kasy & Simon Quinn & Soha Osman Shami & Alexander Teytelboym, 2024. "An Adaptive Targeted Field Experiment: Job Search Assistance for Refugees in Jordan," Journal of the European Economic Association, European Economic Association, vol. 22(2), pages 781-836.
    6. Lawless Caroline & Arbel Julyan, 2019. "A simple proof of Pitman–Yor’s Chinese restaurant process from its stick-breaking representation," Dependence Modeling, De Gruyter, vol. 7(1), pages 45-52, March.
    7. Reiß, Markus & Schmidt-Hieber, Johannes, 2020. "Posterior contraction rates for support boundary recovery," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6638-6656.
    8. Dmitry B. Rokhlin, 2021. "Relative utility bounds for empirically optimal portfolios," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 437-462, June.
    9. Suzanne Sniekers & Aad Vaart, 2020. "Adaptive Bayesian credible bands in regression with a Gaussian process prior," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 386-425, August.
    10. Shota Gugushvili & Frank van der Meulen & Moritz Schauer & Peter Spreij, 2018. "Nonparametric Bayesian volatility estimation," Papers 1801.09956, arXiv.org, revised Mar 2019.
    11. Ruixuan Liu & Zhengfei Yu, 2024. "Quasi-Bayesian Estimation and Inference with Control Functions," Papers 2402.17374, arXiv.org.
    12. Roy, Arkaprava & Ghosal, Subhashis, 2022. "Optimal Bayesian smoothing of functional observations over a large graph," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    13. Martin Burda & Remi Daviet, 2023. "Hamiltonian sequential Monte Carlo with application to consumer choice behavior," Econometric Reviews, Taylor & Francis Journals, vol. 42(1), pages 54-77, January.
    14. Geurt Jongbloed & Frank H. van der Meulen & Lixue Pang, 2022. "Bayesian nonparametric estimation in the current status continuous mark model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1329-1352, September.
    15. Christoph Breunig & Ruixuan Liu & Zhengfei Yu, 2024. "Semiparametric Bayesian Difference-in-Differences," Papers 2412.04605, arXiv.org, revised Dec 2024.
    16. Christopher D. Walker, 2023. "Parametrization, Prior Independence, and the Semiparametric Bernstein-von Mises Theorem for the Partially Linear Model," Papers 2306.03816, arXiv.org, revised Feb 2024.
    17. Walker, Stephen G., 2023. "Comparing weak and strong convergence of density functions," Statistics & Probability Letters, Elsevier, vol. 200(C).
    18. Laura Gwilliams & Jean-Remi King & Alec Marantz & David Poeppel, 2022. "Neural dynamics of phoneme sequences reveal position-invariant code for content and order," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    19. Miller Jeffrey W., 2023. "Consistency of mixture models with a prior on the number of components," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-9, January.
    20. Petrova, Katerina, 2022. "Asymptotically valid Bayesian inference in the presence of distributional misspecification in VAR models," Journal of Econometrics, Elsevier, vol. 230(1), pages 154-182.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:629-641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.