IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i2p1173-1186.html
   My bibliography  Save this article

Inference for nonparanormal partial correlation via regularized rank‐based nodewise regression

Author

Listed:
  • Haoyan Hu
  • Yumou Qiu

Abstract

Partial correlation is a common tool in studying conditional dependence for Gaussian distributed data. However, partial correlation being zero may not be equivalent to conditional independence under non‐Gaussian distributions. In this paper, we propose a statistical inference procedure for partial correlations under the high‐dimensional nonparanormal (NPN) model where the observed data are normally distributed after certain monotone transformations. The NPN partial correlation is the partial correlation of the normal transformed data under the NPN model, which is a more general measure of conditional dependence. We estimate the NPN partial correlations by regularized nodewise regression based on the empirical ranks of the original data. A multiple testing procedure is proposed to identify the nonzero NPN partial correlations. The proposed method can be carried out by a simple coordinate descent algorithm for lasso optimization. It is easy‐to‐implement and computationally more efficient compared to the existing methods for estimating NPN graphical models. Theoretical results are developed to show the asymptotic normality of the proposed estimator and to justify the proposed multiple testing procedure. Numerical simulations and a case study on brain imaging data demonstrate the utility of the proposed procedure and evaluate its performance compared to the existing methods. Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.

Suggested Citation

  • Haoyan Hu & Yumou Qiu, 2023. "Inference for nonparanormal partial correlation via regularized rank‐based nodewise regression," Biometrics, The International Biometric Society, vol. 79(2), pages 1173-1186, June.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:1173-1186
    DOI: 10.1111/biom.13624
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13624
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13624?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mai, Qing & Zou, Hui, 2015. "Sparse semiparametric discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 175-188.
    2. He, Yong & Zhang, Xinsheng & Wang, Pingping & Zhang, Liwen, 2017. "High dimensional Gaussian copula graphical model with FDR control," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 457-474.
    3. Peng, Jie & Wang, Pei & Zhou, Nengfeng & Zhu, Ji, 2009. "Partial Correlation Estimation by Joint Sparse Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 735-746.
    4. Chang, Jinyuan & Qiu, Yumou & Yao, Qiwei & Zou, Tao, 2018. "Confidence regions for entries of a large precision matrix," Journal of Econometrics, Elsevier, vol. 206(1), pages 57-82.
    5. Chang, Jinyuan & Qiu, Yumou & Yao, Qiwei & Zou, Tao, 2018. "Confidence regions for entries of a large precision matrix," LSE Research Online Documents on Economics 87513, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hafner, Christian M. & Linton, Oliver B. & Tang, Haihan, 2020. "Estimation of a multiplicative correlation structure in the large dimensional case," Journal of Econometrics, Elsevier, vol. 217(2), pages 431-470.
    2. Yumou Qiu & Jing Tao & Xiao‐Hua Zhou, 2021. "Inference of heterogeneous treatment effects using observational data with high‐dimensional covariates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 1016-1043, November.
    3. Chang, Jinyuan & Jiang, Qing & Shao, Xiaofeng, 2023. "Testing the martingale difference hypothesis in high dimension," Journal of Econometrics, Elsevier, vol. 235(2), pages 972-1000.
    4. Hafner, Christian M. & Wang, Linqi, 2023. "A dynamic conditional score model for the log correlation matrix," Journal of Econometrics, Elsevier, vol. 237(2).
    5. Ekaterina Seregina, 2020. "A Basket Half Full: Sparse Portfolios," Papers 2011.04278, arXiv.org, revised Apr 2021.
    6. Chang, Jinyuan & Qiu, Yumou & Yao, Qiwei & Zou, Tao, 2018. "Confidence regions for entries of a large precision matrix," LSE Research Online Documents on Economics 87513, London School of Economics and Political Science, LSE Library.
    7. Mehmet Caner & Qingliang Fan & Yingying Li, 2024. "Navigating Complexity: Constrained Portfolio Analysis in High Dimensions with Tracking Error and Weight Constraints," Papers 2402.17523, arXiv.org.
    8. Caner, Mehmet & Medeiros, Marcelo & Vasconcelos, Gabriel F.R., 2023. "Sharpe Ratio analysis in high dimensions: Residual-based nodewise regression in factor models," Journal of Econometrics, Elsevier, vol. 235(2), pages 393-417.
    9. Dmitry Semenov & Alexander Koldanov & Petr Koldanov, 2024. "Analysis of weakly correlated nodes in market network," Computational Management Science, Springer, vol. 21(1), pages 1-18, June.
    10. Chang, Jinyuan & Hu, Qiao & Kolaczyk, Eric D. & Yao, Qiwei & Yi, Fengting, 2024. "Edge differentially private estimation in the β-model via jittering and method of moments," LSE Research Online Documents on Economics 122099, London School of Economics and Political Science, LSE Library.
    11. Jie Jian & Peijun Sang & Mu Zhu, 2024. "Two Gaussian Regularization Methods for Time-Varying Networks," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 853-873, December.
    12. Lee, Wonyul & Liu, Yufeng, 2012. "Simultaneous multiple response regression and inverse covariance matrix estimation via penalized Gaussian maximum likelihood," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 241-255.
    13. Seunghwan Lee & Sang Cheol Kim & Donghyeon Yu, 2023. "An efficient GPU-parallel coordinate descent algorithm for sparse precision matrix estimation via scaled lasso," Computational Statistics, Springer, vol. 38(1), pages 217-242, March.
    14. Ines Wilms & Jacob Bien, 2021. "Tree-based Node Aggregation in Sparse Graphical Models," Papers 2101.12503, arXiv.org.
    15. Jianqing Fan & Lingzhou Xue & Hui Zou, 2016. "Multitask Quantile Regression Under the Transnormal Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1726-1735, October.
    16. Matteo Barigozzi & Marc Hallin, 2015. "Networks, Dynamic Factors, and the Volatility Analysis of High-Dimensional Financial Series," Working Papers ECARES ECARES 2015-34, ULB -- Universite Libre de Bruxelles.
    17. Zehua Chen & Yiwei Jiang, 2020. "A two-stage sequential conditional selection approach to sparse high-dimensional multivariate regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 65-90, February.
    18. Dimitri Yatsenko & Krešimir Josić & Alexander S Ecker & Emmanouil Froudarakis & R James Cotton & Andreas S Tolias, 2015. "Improved Estimation and Interpretation of Correlations in Neural Circuits," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-28, March.
    19. Kim, Kyongwon, 2022. "On principal graphical models with application to gene network," Computational Statistics & Data Analysis, Elsevier, vol. 166(C).
    20. Shanghong Xie & Xiang Li & Peter McColgan & Rachael I. Scahill & Donglin Zeng & Yuanjia Wang, 2020. "Identifying disease‐associated biomarker network features through conditional graphical model," Biometrics, The International Biometric Society, vol. 76(3), pages 995-1006, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:1173-1186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.