IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i1p417-425.html
   My bibliography  Save this article

A linear mixed model to estimate COVID‐19‐induced excess mortality

Author

Listed:
  • Johan Verbeeck
  • Christel Faes
  • Thomas Neyens
  • Niel Hens
  • Geert Verbeke
  • Patrick Deboosere
  • Geert Molenberghs

Abstract

The Corona Virus Disease (COVID‐19) pandemic has increased mortality in countries worldwide. To evaluate the impact of the pandemic on mortality, the use of excess mortality rather than reported COVID‐19 deaths has been suggested. Excess mortality, however, requires estimation of mortality under nonpandemic conditions. Although many methods exist to forecast mortality, they are either complex to apply, require many sources of information, ignore serial correlation, and/or are influenced by historical excess mortality. We propose a linear mixed model that is easy to apply, requires only historical mortality data, allows for serial correlation, and down‐weighs the influence of historical excess mortality. Appropriateness of the linear mixed model is evaluated with fit statistics and forecasting accuracy measures for Belgium and the Netherlands. Unlike the commonly used 5‐year weekly average, the linear mixed model is forecasting the year‐specific mortality, and as a result improves the estimation of excess mortality for Belgium and the Netherlands.

Suggested Citation

  • Johan Verbeeck & Christel Faes & Thomas Neyens & Niel Hens & Geert Verbeke & Patrick Deboosere & Geert Molenberghs, 2023. "A linear mixed model to estimate COVID‐19‐induced excess mortality," Biometrics, The International Biometric Society, vol. 79(1), pages 417-425, March.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:1:p:417-425
    DOI: 10.1111/biom.13578
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13578
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13578?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David Morgan & Junya Ino & Gabriel Di Paolantonio & Fabrice Murtin, 2020. "Excess mortality: Measuring the direct and indirect impact of COVID-19," OECD Health Working Papers 122, OECD Publishing.
    2. Harvey, A C & Todd, P H J, 1983. "Forecasting Economic Time Series with Structural and Box-Jenkins Models: A Case Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(4), pages 299-307, October.
    3. C. P. Farrington & N. J. Andrews & A. D. Beale & M. A. Catchpole, 1996. "A Statistical Algorithm for the Early Detection of Outbreaks of Infectious Disease," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 159(3), pages 547-563, May.
    4. Harvey, A C & Todd, P H J, 1983. "Forecasting Economic Time Series with Structural and Box-Jenkins Models: A Case Study: Response," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(4), pages 313-315, October.
    5. Bianca Cox & Françoise Wuillaume & Herman Oyen & Sophie Maes, 2010. "Monitoring of all-cause mortality in Belgium (Be-MOMO): a new and automated system for the early detection and quantification of the mortality impact of public health events," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 55(4), pages 251-259, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sbrana, Giacomo, 2013. "The exact linkage between the Beveridge–Nelson decomposition and other permanent-transitory decompositions," Economic Modelling, Elsevier, vol. 30(C), pages 311-316.
    2. Franses, P.H. & McAleer, M., 1995. "Testing Nested and Non-Nested Periodically Integrated Autoregressive Models," Papers 9510, Tilburg - Center for Economic Research.
    3. Mihnea Constantinescu & Anh Dinh Minh Nguyen, 2017. "Unemployment or Credit: Who Holds The Potential? Results From a Small-Open Economy," Bank of Lithuania Discussion Paper Series 4, Bank of Lithuania.
    4. Guido Ascari & Paolo Bonomolo & Qazi Haque, 2023. "The Long-Run Phillips Curve is ... a Curve," DEM Working Papers Series 213, University of Pavia, Department of Economics and Management.
    5. Marczak, Martyna & Proietti, Tommaso, 2016. "Outlier detection in structural time series models: The indicator saturation approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 180-202.
    6. Kosei Fukuda, 2010. "Three new empirical perspectives on the Hodrick–Prescott parameter," Empirical Economics, Springer, vol. 39(3), pages 713-731, December.
    7. Shah, Muhammad Ibrahim & Kirikkaleli, Dervis & Adedoyin, Festus Fatai, 2021. "Regime switching effect of COVID-19 pandemic on renewable electricity generation in Denmark," Renewable Energy, Elsevier, vol. 175(C), pages 797-806.
    8. Ester Ruiz & Fernando Lorenzo, 1997. "Prediction with univariate time series models: The Iberia case," Documentos de Trabajo (working papers) 0298, Department of Economics - dECON.
    9. Victor Gomez & Jorg Breitung, 1999. "The Beveridge–Nelson Decomposition: A Different Perspective with New Results," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(5), pages 527-535, September.
    10. Saligari, Grant R. & Snyder, Ralph D., 1997. "Trends, lead times and forecasting," International Journal of Forecasting, Elsevier, vol. 13(4), pages 477-488, December.
    11. Marczak, Martyna & Proietti, Tommaso & Grassi, Stefano, 2018. "A data-cleaning augmented Kalman filter for robust estimation of state space models," Econometrics and Statistics, Elsevier, vol. 5(C), pages 107-123.
    12. Ralf Dewenter & Ulrich Heimeshoff, 2017. "Predicting Advertising Volumes Using Structural Time Series Models: A Case Study," Economics Bulletin, AccessEcon, vol. 37(3), pages 1644-1652.
    13. Walter Labys, 2005. "Commodity Price Fluctuations: A Century of Analysis," Working Papers Working Paper 2005-01, Regional Research Institute, West Virginia University.
    14. Naci H. Mocan & Kudret Topyan, 1993. "Illicit Drug Use and Health: Analysis and Projections of New York City Birth Outcomes Using a Kalman Filter Model," NBER Working Papers 4359, National Bureau of Economic Research, Inc.
    15. Mr. Sebastian Acevedo Mejia & Lu Han & Miss Marie S Kim & Ms. Nicole Laframboise, 2016. "Flying to Paradise: The Role of Airlift in the Caribbean Tourism Industry," IMF Working Papers 2016/033, International Monetary Fund.
    16. Nelson, Charles R., 1988. "Spurious trend and cycle in the state space decomposition of a time series with a unit root," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 475-488.
    17. Garcia-Ferrer, Antonio & Queralt, Ricardo A., 1998. "Can univariate models forecast turning points in seasonal economic time series?," International Journal of Forecasting, Elsevier, vol. 14(4), pages 433-446, December.
    18. Rasi, Chris-Marie & Viikari, Jan-Markus, 1998. "The time-varying NAIRU and potential output in Finland," Research Discussion Papers 6/1998, Bank of Finland.
    19. Thury, Gerhard & Witt, Stephen F., 1998. "Forecasting industrial production using structural time series models," Omega, Elsevier, vol. 26(6), pages 751-767, December.
    20. C. R. McKenzie & Michael McAleer, 2001. "Comparing Tests of Autoregressive Versus Moving Average Errors in Regression Models Using Bahadur's Asymptotic Relative Efficiency," ISER Discussion Paper 0537, Institute of Social and Economic Research, Osaka University.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:1:p:417-425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.