IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v78y2022i4p1626-1638.html
   My bibliography  Save this article

Sufficient dimension reduction for populations with structured heterogeneity

Author

Listed:
  • Jared D. Huling
  • Menggang Yu

Abstract

A key challenge in building effective regression models for large and diverse populations is accounting for patient heterogeneity. An example of such heterogeneity is in health system risk modeling efforts where different combinations of comorbidities fundamentally alter the relationship between covariates and health outcomes. Accounting for heterogeneity arising combinations of factors can yield more accurate and interpretable regression models. Yet, in the presence of high‐dimensional covariates, accounting for this type of heterogeneity can exacerbate estimation difficulties even with large sample sizes. To handle these issues, we propose a flexible and interpretable risk modeling approach based on semiparametric sufficient dimension reduction. The approach accounts for patient heterogeneity, borrows strength in estimation across related subpopulations to improve both estimation efficiency and interpretability, and can serve as a useful exploratory tool or as a powerful predictive model. In simulated examples, we show that our approach often improves estimation performance in the presence of heterogeneity and is quite robust to deviations from its key underlying assumptions. We demonstrate our approach in an analysis of hospital admission risk for a large health system and demonstrate its predictive power when tested on further follow‐up data.

Suggested Citation

  • Jared D. Huling & Menggang Yu, 2022. "Sufficient dimension reduction for populations with structured heterogeneity," Biometrics, The International Biometric Society, vol. 78(4), pages 1626-1638, December.
  • Handle: RePEc:bla:biomet:v:78:y:2022:i:4:p:1626-1638
    DOI: 10.1111/biom.13546
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13546
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13546?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Curtis Tatsuoka & Thomas Ferguson, 2003. "Sequential classification on partially ordered sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 143-157, February.
    2. Yanyuan Ma & Xinyu Zhang, 2015. "A validated information criterion to determine the structural dimension in dimension reduction models," Biometrika, Biometrika Trust, vol. 102(2), pages 409-420.
    3. Yanyuan Ma & Liping Zhu, 2012. "A Semiparametric Approach to Dimension Reduction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 168-179, March.
    4. Luo, Wei & Cai, Xizhen, 2016. "A new estimator for efficient dimension reduction in regression," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 236-249.
    5. Yingcun Xia & Howell Tong & W. K. Li & Li‐Xing Zhu, 2002. "An adaptive estimation of dimension reduction space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 363-410, August.
    6. Prasad A. Naik & Chih-Ling Tsai, 2005. "Constrained Inverse Regression for Incorporating Prior Information," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 204-211, March.
    7. Stoker, Thomas M, 1986. "Consistent Estimation of Scaled Coefficients," Econometrica, Econometric Society, vol. 54(6), pages 1461-1481, November.
    8. Yanyuan Ma & Liping Zhu, 2014. "On estimation efficiency of the central mean subspace," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(5), pages 885-901, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Canyi & Xu, Wangli & Zhu, Liping, 2022. "Distributed estimation in heterogeneous reduced rank regression: With application to order determination in sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    2. Xinchao Luo & Lixing Zhu & Hongtu Zhu, 2016. "Single‐index varying coefficient model for functional responses," Biometrics, The International Biometric Society, vol. 72(4), pages 1275-1284, December.
    3. Fan, Guo-Liang & Xu, Hong-Xia & Liang, Han-Ying, 2019. "Dimension reduction estimation for central mean subspace with missing multivariate response," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    4. Lu Li & Kai Tan & Xuerong Meggie Wen & Zhou Yu, 2023. "Variable-dependent partial dimension reduction," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 521-541, June.
    5. Luo, Wei & Cai, Xizhen, 2016. "A new estimator for efficient dimension reduction in regression," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 236-249.
    6. Zifang Guo & Lexin Li & Wenbin Lu & Bing Li, 2015. "Groupwise Dimension Reduction via Envelope Method," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1515-1527, December.
    7. Feng, Zhenghui & Wang, Tao & Zhu, Lixing, 2014. "Transformation-based estimation," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 186-205.
    8. Sheng, Wenhui & Yin, Xiangrong, 2013. "Direction estimation in single-index models via distance covariance," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 148-161.
    9. Cheng, Qing & Zhu, Liping, 2017. "On relative efficiency of principal Hessian directions," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 108-113.
    10. Ming-Yueh Huang & Chin-Tsang Chiang, 2017. "An Effective Semiparametric Estimation Approach for the Sufficient Dimension Reduction Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1296-1310, July.
    11. Shang, Shulian & Liu, Mengling & Zeleniuch-Jacquotte, Anne & Clendenen, Tess V. & Krogh, Vittorio & Hallmans, Goran & Lu, Wenbin, 2013. "Partially linear single index Cox regression model in nested case-control studies," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 199-212.
    12. Wang, Qin & Yin, Xiangrong, 2008. "A nonlinear multi-dimensional variable selection method for high dimensional data: Sparse MAVE," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4512-4520, May.
    13. Yongtao Guan & Hansheng Wang, 2010. "Sufficient dimension reduction for spatial point processes directed by Gaussian random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 367-387, June.
    14. Wai-Yin Poon & Hai-Bin Wang, 2014. "Multivariate partially linear single-index models: Bayesian analysis," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(4), pages 755-768, December.
    15. Ping Yu & Jiang Du & Zhongzhan Zhang, 2020. "Single-index partially functional linear regression model," Statistical Papers, Springer, vol. 61(3), pages 1107-1123, June.
    16. Lei Wang, 2019. "Dimension reduction for kernel-assisted M-estimators with missing response at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 889-910, August.
    17. Qingming Zou & Zhongyi Zhu, 2014. "M-estimators for single-index model using B-spline," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(2), pages 225-246, February.
    18. Wu, Jingwei & Peng, Hanxiang & Tu, Wanzhu, 2019. "Large-sample estimation and inference in multivariate single-index models," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 382-396.
    19. Akritas, Michael G., 2016. "Projection pursuit multi-index (PPMI) models," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 99-103.
    20. Wenjuan Li & Wenying Wang & Jingsi Chen & Weidong Rao, 2023. "Aggregate Kernel Inverse Regression Estimation," Mathematics, MDPI, vol. 11(12), pages 1-10, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:78:y:2022:i:4:p:1626-1638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.