IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v78y2022i3p950-962.html
   My bibliography  Save this article

A semiparametric model for between‐subject attributes: Applications to beta‐diversity of microbiome data

Author

Listed:
  • J. Liu
  • Xinlian Zhang
  • T. Chen
  • T. Wu
  • T. Lin
  • L. Jiang
  • S. Lang
  • L. Liu
  • L. Natarajan
  • J.X. Tu
  • T. Kosciolek
  • J. Morton
  • T.T. Nguyen
  • B. Schnabl
  • R. Knight
  • C. Feng
  • Y. Zhong
  • X.M. Tu

Abstract

The human microbiome plays an important role in our health and identifying factors associated with microbiome composition provides insights into inherent disease mechanisms. By amplifying and sequencing the marker genes in high‐throughput sequencing, with highly similar sequences binned together, we obtain operational taxonomic units (OTUs) profiles for each subject. Due to the high‐dimensionality and nonnormality features of the OTUs, the measure of diversity is introduced as a summarization at the microbial community level, including the distance‐based beta‐diversity between individuals. Analyses of such between‐subject attributes are not amenable to the predominant within‐subject‐based statistical paradigm, such as t‐tests and linear regression. In this paper, we propose a new approach to model beta‐diversity as a response within a regression setting by utilizing the functional response models (FRMs), a class of semiparametric models for between‐ as well as within‐subject attributes. The new approach not only addresses limitations of current methods for beta‐diversity with cross‐sectional data, but also provides a premise for extending the approach to longitudinal and other clustered data in the future. The proposed approach is illustrated with both real and simulated data.

Suggested Citation

  • J. Liu & Xinlian Zhang & T. Chen & T. Wu & T. Lin & L. Jiang & S. Lang & L. Liu & L. Natarajan & J.X. Tu & T. Kosciolek & J. Morton & T.T. Nguyen & B. Schnabl & R. Knight & C. Feng & Y. Zhong & X.M. T, 2022. "A semiparametric model for between‐subject attributes: Applications to beta‐diversity of microbiome data," Biometrics, The International Biometric Society, vol. 78(3), pages 950-962, September.
  • Handle: RePEc:bla:biomet:v:78:y:2022:i:3:p:950-962
    DOI: 10.1111/biom.13487
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13487
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13487?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jesse Hemerik & Jelle J. Goeman, 2018. "False discovery proportion estimation by permutations: confidence for significance analysis of microarrays," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(1), pages 137-155, January.
    2. James T. Morton & Clarisse Marotz & Alex Washburne & Justin Silverman & Livia S. Zaramela & Anna Edlund & Karsten Zengler & Rob Knight, 2019. "Establishing microbial composition measurement standards with reference frames," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    3. Eddelbuettel, Dirk & Francois, Romain, 2011. "Rcpp: Seamless R and C++ Integration," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i08).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wilson J. Wright & Peter N. Neitlich & Alyssa E. Shiel & Mevin B. Hooten, 2022. "Mechanistic spatial models for heavy metal pollution," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
    2. Huang Lin & Merete Eggesbø & Shyamal Das Peddada, 2022. "Linear and nonlinear correlation estimators unveil undescribed taxa interactions in microbiome data," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Shen, Yunyi & Olson, Erik R. & Van Deelen, Timothy R., 2021. "Spatially explicit modeling of community occupancy using Markov Random Field models with imperfect observation: Mesocarnivores in Apostle Islands National Lakeshore," Ecological Modelling, Elsevier, vol. 459(C).
    4. Fernández de Marcos Giménez de los Galanes, Alberto, 2022. "Data-driven stabilizations of goodness-of-fit tests," DES - Working Papers. Statistics and Econometrics. WS 35324, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Bandara, Kanchana & Varpe, Øystein & Ji, Rubao & Eiane, Ketil, 2018. "A high-resolution modeling study on diel and seasonal vertical migrations of high-latitude copepods," Ecological Modelling, Elsevier, vol. 368(C), pages 357-376.
    6. Carter Allen & Yuzhou Chang & Brian Neelon & Won Chang & Hang J. Kim & Zihai Li & Qin Ma & Dongjun Chung, 2023. "A Bayesian multivariate mixture model for high throughput spatial transcriptomics," Biometrics, The International Biometric Society, vol. 79(3), pages 1775-1787, September.
    7. Sloot Henrik, 2022. "Implementing Markovian models for extendible Marshall–Olkin distributions," Dependence Modeling, De Gruyter, vol. 10(1), pages 308-343, January.
    8. Cindy Frascolla & Guillaume Lecuelle & Pascal Schlich & Hervé Cardot, 2022. "Two sample tests for Semi-Markov processes with parametric sojourn time distributions: an application in sensory analysis," Computational Statistics, Springer, vol. 37(5), pages 2553-2580, November.
    9. Juan C. Laria & M. Carmen Aguilera-Morillo & Rosa E. Lillo, 2023. "Group linear algorithm with sparse principal decomposition: a variable selection and clustering method for generalized linear models," Statistical Papers, Springer, vol. 64(1), pages 227-253, February.
    10. Ghislain Geniaux, 2024. "Speeding up estimation of spatially varying coefficients models," Journal of Geographical Systems, Springer, vol. 26(3), pages 293-327, July.
    11. Hess, Stephane & Palma, David, 2019. "Apollo: A flexible, powerful and customisable freeware package for choice model estimation and application," Journal of choice modelling, Elsevier, vol. 32(C), pages 1-1.
    12. Samrachana Adhikari & Tracy Sweet & Brian Junker, 2021. "Analysis of longitudinal advice‐seeking networks following implementation of high stakes testing," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1475-1500, October.
    13. François Bachoc & Marc G Genton & Klaus Nordhausen & Anne Ruiz-Gazen & Joni Virta, 2020. "Spatial blind source separation," Biometrika, Biometrika Trust, vol. 107(3), pages 627-646.
    14. Bill Venables, 2017. "JOHN M. CHAMBERS . Extending R . Boca Raton : CRC Press," Biometrics, The International Biometric Society, vol. 73(2), pages 709-710, June.
    15. Di Mari, Roberto & Bakk, Zsuzsa & Oser, Jennifer & Kuha, Jouni, 2023. "A two-step estimator for multilevel latent class analysis with covariates," LSE Research Online Documents on Economics 119994, London School of Economics and Political Science, LSE Library.
    16. Xiaotian Zhu & David R. Hunter, 2019. "Clustering via finite nonparametric ICA mixture models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 65-87, March.
    17. Ferraccioli, Federico & Sangalli, Laura M. & Finos, Livio, 2022. "Some first inferential tools for spatial regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    18. Matthew Pietrosanu & Jueyu Gao & Linglong Kong & Bei Jiang & Di Niu, 2021. "Advanced algorithms for penalized quantile and composite quantile regression," Computational Statistics, Springer, vol. 36(1), pages 333-346, March.
    19. DiTraglia, Francis J., 2016. "Using invalid instruments on purpose: Focused moment selection and averaging for GMM," Journal of Econometrics, Elsevier, vol. 195(2), pages 187-208.
    20. Anoek Castelein & Dennis Fok & Richard Paap, 2020. "A multinomial and rank-ordered logit model with inter- and intra-individual heteroscedasticity," Tinbergen Institute Discussion Papers 20-069/III, Tinbergen Institute.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:78:y:2022:i:3:p:950-962. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.