IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v77y2021i4p1215-1226.html
   My bibliography  Save this article

Nonparametric cluster significance testing with reference to a unimodal null distribution

Author

Listed:
  • Erika S. Helgeson
  • David M. Vock
  • Eric Bair

Abstract

Cluster analysis is an unsupervised learning strategy that is exceptionally useful for identifying homogeneous subgroups of observations in data sets of unknown structure. However, it is challenging to determine if the identified clusters represent truly distinct subgroups rather than noise. Existing approaches for addressing this problem tend to define clusters based on distributional assumptions, ignore the inherent correlation structure in the data, or are not suited for high‐dimension low‐sample size (HDLSS) settings. In this paper, we propose a novel method to evaluate the significance of identified clusters by comparing the explained variation due to the clustering from the original data to that produced by clustering a unimodal reference distribution that preserves the covariance structure in the data. The reference distribution is generated using kernel density estimation, and thus, does not require that the data follow a particular distribution. By utilizing sparse covariance estimation, the method is adapted for the HDLSS setting. The approach can be used to test the null hypothesis that the data cannot be partitioned into clusters and to determine the optimal number of clusters. Simulation examples, theoretical evaluations, and applications to temporomandibular disorder research and cancer microarray data illustrate the utility of the proposed method.

Suggested Citation

  • Erika S. Helgeson & David M. Vock & Eric Bair, 2021. "Nonparametric cluster significance testing with reference to a unimodal null distribution," Biometrics, The International Biometric Society, vol. 77(4), pages 1215-1226, December.
  • Handle: RePEc:bla:biomet:v:77:y:2021:i:4:p:1215-1226
    DOI: 10.1111/biom.13376
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13376
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13376?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gaynor, Sheila & Bair, Eric, 2017. "Identification of relevant subtypes via preweighted sparse clustering," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 139-154.
    2. Robert Tibshirani & Guenther Walther & Trevor Hastie, 2001. "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 411-423.
    3. Walther G., 2002. "Detecting the Presence of Mixing with Multiscale Maximum Likelihood," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 508-513, June.
    4. Charles M. Perou & Therese Sørlie & Michael B. Eisen & Matt van de Rijn & Stefanie S. Jeffrey & Christian A. Rees & Jonathan R. Pollack & Douglas T. Ross & Hilde Johnsen & Lars A. Akslen & Øystein Flu, 2000. "Molecular portraits of human breast tumours," Nature, Nature, vol. 406(6797), pages 747-752, August.
    5. Ranjan Maitra & Volodymyr Melnykov & Soumendra N. Lahiri, 2012. "Bootstrapping for Significance of Compact Clusters in Multidimensional Datasets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 378-392, March.
    6. Fang, Yixin & Wang, Junhui, 2012. "Selection of the number of clusters via the bootstrap method," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 468-477.
    7. Ahmed, Murat O. & Walther, Guenther, 2012. "Investigating the multimodality of multivariate data with principal curves," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4462-4469.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lingsong Meng & Dorina Avram & George Tseng & Zhiguang Huo, 2022. "Outcome‐guided sparse K‐means for disease subtype discovery via integrating phenotypic data with high‐dimensional transcriptomic data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 352-375, March.
    2. Yujia Li & Xiangrui Zeng & Chien‐Wei Lin & George C. Tseng, 2022. "Simultaneous estimation of cluster number and feature sparsity in high‐dimensional cluster analysis," Biometrics, The International Biometric Society, vol. 78(2), pages 574-585, June.
    3. Jonas M. B. Haslbeck & Dirk U. Wulff, 2020. "Estimating the number of clusters via a corrected clustering instability," Computational Statistics, Springer, vol. 35(4), pages 1879-1894, December.
    4. Peter Radchenko & Gourab Mukherjee, 2017. "Convex clustering via l 1 fusion penalization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1527-1546, November.
    5. Zhiguang Huo & Li Zhu & Tianzhou Ma & Hongcheng Liu & Song Han & Daiqing Liao & Jinying Zhao & George Tseng, 2020. "Two-Way Horizontal and Vertical Omics Integration for Disease Subtype Discovery," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(1), pages 1-22, April.
    6. Michael Vogt & Matthias Schmid, 2021. "Clustering with statistical error control," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 729-760, September.
    7. Zhiguang Huo & Ying Ding & Silvia Liu & Steffi Oesterreich & George Tseng, 2016. "Meta-Analytic Framework for Sparse K -Means to Identify Disease Subtypes in Multiple Transcriptomic Studies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 27-42, March.
    8. Fujita, André & Takahashi, Daniel Y. & Patriota, Alexandre G., 2014. "A non-parametric method to estimate the number of clusters," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 27-39.
    9. Chen, Xi & Wang, Lily & Ishwaran, Hemant, 2010. "An integrative pathway-based clinical-genomic model for cancer survival prediction," Statistics & Probability Letters, Elsevier, vol. 80(17-18), pages 1313-1319, September.
    10. Yang, Xi & Hoadley, Katherine A. & Hannig, Jan & Marron, J.S., 2023. "Jackstraw inference for AJIVE data integration," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    11. Thiemo Fetzer & Samuel Marden, 2017. "Take What You Can: Property Rights, Contestability and Conflict," Economic Journal, Royal Economic Society, vol. 0(601), pages 757-783, May.
    12. Daniel Agness & Travis Baseler & Sylvain Chassang & Pascaline Dupas & Erik Snowberg, 2022. "Valuing the Time of the Self-Employed," CESifo Working Paper Series 9567, CESifo.
    13. Batool, Fatima & Hennig, Christian, 2021. "Clustering with the Average Silhouette Width," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    14. Nicoleta Serban & Huijing Jiang, 2012. "Multilevel Functional Clustering Analysis," Biometrics, The International Biometric Society, vol. 68(3), pages 805-814, September.
    15. Manish G & Anil Kumar Badana & Rama Rao Malla, 2017. "Emerging Diagnostic and Prognostic Biomarkers of Triple Negative Breast Cancer," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 1(3), pages 561-565, August.
    16. Jacob Elnaggar & Fern Tsien & Lucio Miele & Chindo Hicks & Clayton Yates & Melisa Davis, 2019. "An Integrative Genomics Approach for Associating Genetic Susceptibility with the Tumor Immune Microenvironment in Triple Negative Breast Cancer," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 15(1), pages 1-12, February.
    17. Egashira, Kento & Yata, Kazuyoshi & Aoshima, Makoto, 2024. "Asymptotic properties of hierarchical clustering in high-dimensional settings," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    18. Orietta Nicolis & Jean Paul Maidana & Fabian Contreras & Danilo Leal, 2024. "Analyzing the Impact of COVID-19 on Economic Sustainability: A Clustering Approach," Sustainability, MDPI, vol. 16(4), pages 1-30, February.
    19. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    20. María Elena Martínez & Jonathan T Unkart & Li Tao & Candyce H Kroenke & Richard Schwab & Ian Komenaka & Scarlett Lin Gomez, 2017. "Prognostic significance of marital status in breast cancer survival: A population-based study," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-14, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:77:y:2021:i:4:p:1215-1226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.