IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v76y2020i3p874-885.html
   My bibliography  Save this article

Discovering structure in multiple outcomes models for tests of childhood neurodevelopment

Author

Listed:
  • Amy LaLonde
  • Tanzy Love
  • Sally W. Thurston
  • Philip W. Davidson

Abstract

Bayesian model–based clustering provides a powerful and flexible tool that can be incorporated into regression models to better understand the grouping of observations. Using data from the Seychelles Child Development Study, we explore the effect of prenatal methylmercury exposure on 20 neurodevelopmental outcomes measured in 9‐year‐old children. Rather than cluster individual subjects, we cluster the outcomes within a multiple outcomes model. By using information in the data to nest the outcomes into groups called domains, the model more accurately reflects the shared characteristics of neurodevelopmental domains and improves estimation of the overall and outcome‐specific exposure effects by shrinking effects within and between domains selected by the data. The Bayesian paradigm allows for sampling from the posterior distribution of the grouping parameters; thus, inference can be made about group membership and their defining characteristics. We avoid the often difficult and highly subjective requirement of a priori identification of the total number of groups by incorporating a Dirichlet process prior to form a fully Bayesian multiple outcomes model.

Suggested Citation

  • Amy LaLonde & Tanzy Love & Sally W. Thurston & Philip W. Davidson, 2020. "Discovering structure in multiple outcomes models for tests of childhood neurodevelopment," Biometrics, The International Biometric Society, vol. 76(3), pages 874-885, September.
  • Handle: RePEc:bla:biomet:v:76:y:2020:i:3:p:874-885
    DOI: 10.1111/biom.13174
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13174
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13174?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Luo Xiao & Sally W. Thurston & David Ruppert & Tanzy M. T. Love & Philip W. Davidson, 2014. "Bayesian Models for Multiple Outcomes in Domains With Application to the Seychelles Child Development Study," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 1-10, March.
    2. D. B. Woodard & T. M. T. Love & S. W. Thurston & D. Ruppert & S. Sathyanarayana & S. H. Swan, 2013. "Latent factor regression models for grouped outcomes," Biometrics, The International Biometric Society, vol. 69(3), pages 785-794, September.
    3. Sally W. Thurston & David Ruppert & Philip W. Davidson, 2009. "Bayesian Models for Multiple Outcomes Nested in Domains," Biometrics, The International Biometric Society, vol. 65(4), pages 1078-1086, December.
    4. Sanchez, Brisa N. & Budtz-Jorgensen, Esben & Ryan, Louise M. & Hu, Howard, 2005. "Structural Equation Models: A Review With Applications to Environmental Epidemiology," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1443-1455, December.
    5. Matthew Stephens, 2000. "Dealing with label switching in mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 795-809.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexis E. Zavez & Emeir M. McSorley & Alison J. Yeates & Sally W. Thurston, 2023. "A Bayesian Partial Membership Model for Multiple Exposures with Uncertain Group Memberships," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(3), pages 377-400, September.
    2. D. B. Woodard & T. M. T. Love & S. W. Thurston & D. Ruppert & S. Sathyanarayana & S. H. Swan, 2013. "Latent factor regression models for grouped outcomes," Biometrics, The International Biometric Society, vol. 69(3), pages 785-794, September.
    3. Wan-Lun Wang, 2019. "Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 196-222, March.
    4. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    5. Arman Oganisian & Nandita Mitra & Jason A. Roy, 2021. "A Bayesian nonparametric model for zero‐inflated outcomes: Prediction, clustering, and causal estimation," Biometrics, The International Biometric Society, vol. 77(1), pages 125-135, March.
    6. Yao, Weixin & Wei, Yan & Yu, Chun, 2014. "Robust mixture regression using the t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 116-127.
    7. Rufo, M.J. & Pérez, C.J. & Martín, J., 2009. "Local parametric sensitivity for mixture models of lifetime distributions," Reliability Engineering and System Safety, Elsevier, vol. 94(7), pages 1238-1244.
    8. Jeong Eun Lee & Christian Robert, 2013. "Imortance Sampling Schemes for Evidence Approximation in Mixture Models," Working Papers 2013-42, Center for Research in Economics and Statistics.
    9. Aßmann, Christian & Boysen-Hogrefe, Jens & Pape, Markus, 2012. "The directional identification problem in Bayesian factor analysis: An ex-post approach," Kiel Working Papers 1799, Kiel Institute for the World Economy (IfW Kiel).
    10. Sphiwe B. Skhosana & Salomon M. Millard & Frans H. J. Kanfer, 2023. "A Novel EM-Type Algorithm to Estimate Semi-Parametric Mixtures of Partially Linear Models," Mathematics, MDPI, vol. 11(5), pages 1-20, February.
    11. Sun-Joo Cho & Allan S. Cohen, 2010. "A Multilevel Mixture IRT Model With an Application to DIF," Journal of Educational and Behavioral Statistics, , vol. 35(3), pages 336-370, June.
    12. Ungolo, Francesco & Kleinow, Torsten & Macdonald, Angus S., 2020. "A hierarchical model for the joint mortality analysis of pension scheme data with missing covariates," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 68-84.
    13. Ioannis Ntzoufras & Claudia Tarantola, 2012. "Conjugate and Conditional Conjugate Bayesian Analysis of Discrete Graphical Models of Marginal Independence," Quaderni di Dipartimento 178, University of Pavia, Department of Economics and Quantitative Methods.
    14. Brian Hartley, 2020. "Corridor stability of the Kaleckian growth model: a Markov-switching approach," Working Papers 2013, New School for Social Research, Department of Economics, revised Nov 2020.
    15. Park, Byung-Jung & Zhang, Yunlong & Lord, Dominique, 2010. "Bayesian mixture modeling approach to account for heterogeneity in speed data," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 662-673, June.
    16. Papastamoulis, Panagiotis, 2018. "Overfitting Bayesian mixtures of factor analyzers with an unknown number of components," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 220-234.
    17. Simen Alexander Linge Johnsen & Jörg Bollmann, 2020. "Coccolith mass and morphology of different Emiliania huxleyi morphotypes: A critical examination using Canary Islands material," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-29, March.
    18. Nichole E. Carlson & Timothy D. Johnson & Morton B. Brown, 2009. "A Bayesian Approach to Modeling Associations Between Pulsatile Hormones," Biometrics, The International Biometric Society, vol. 65(2), pages 650-659, June.
    19. M. Rufo & J. Martín & C. Pérez, 2006. "Bayesian analysis of finite mixture models of distributions from exponential families," Computational Statistics, Springer, vol. 21(3), pages 621-637, December.
    20. Christian Aßmann, 2015. "Rossi, Peter E.: Bayesian non- and semi-parametric methods and applications," Journal of Economics, Springer, vol. 115(2), pages 195-197, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:76:y:2020:i:3:p:874-885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.