Estimating treatment importance in multidrug‐resistant tuberculosis using Targeted Learning: An observational individual patient data network meta‐analysis
Author
Abstract
Suggested Citation
DOI: 10.1111/biom.13210
Download full text from publisher
References listed on IDEAS
- van der Laan Mark J., 2006. "Statistical Inference for Variable Importance," The International Journal of Biostatistics, De Gruyter, vol. 2(1), pages 1-33, February.
- Shama D Ahuja & David Ashkin & Monika Avendano & Rita Banerjee & Melissa Bauer & Jamie N Bayona & Mercedes C Becerra & Andrea Benedetti & Marcos Burgos & Rosella Centis & Eward D Chan & Chen-Yuan Chia, 2012. "Multidrug Resistant Pulmonary Tuberculosis Treatment Regimens and Patient Outcomes: An Individual Patient Data Meta-analysis of 9,153 Patients," PLOS Medicine, Public Library of Science, vol. 9(8), pages 1-16, August.
- Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
- Kara E. Rudolph & Mark J. Laan, 2017. "Robust estimation of encouragement design intervention effects transported across sites," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1509-1525, November.
- van der Laan Mark J. & Rubin Daniel, 2006. "Targeted Maximum Likelihood Learning," The International Journal of Biostatistics, De Gruyter, vol. 2(1), pages 1-40, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Susan Athey & Guido W. Imbens & Stefan Wager, 2018.
"Approximate residual balancing: debiased inference of average treatment effects in high dimensions,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
- Susan Athey & Guido W. Imbens & Stefan Wager, 2016. "Approximate Residual Balancing: De-Biased Inference of Average Treatment Effects in High Dimensions," Papers 1604.07125, arXiv.org, revised Jan 2018.
- S Ariane Christie & Amanda S Conroy & Rachael A Callcut & Alan E Hubbard & Mitchell J Cohen, 2019. "Dynamic multi-outcome prediction after injury: Applying adaptive machine learning for precision medicine in trauma," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-13, April.
- Kara E. Rudolph & Jonathan Levy & Mark J. van der Laan, 2021. "Transporting stochastic direct and indirect effects to new populations," Biometrics, The International Biometric Society, vol. 77(1), pages 197-211, March.
- Tuglus Catherine & van der Laan Mark J., 2011. "Repeated Measures Semiparametric Regression Using Targeted Maximum Likelihood Methodology with Application to Transcription Factor Activity Discovery," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-31, January.
- Victor Chernozhukov & Whitney K. Newey & Rahul Singh, 2022.
"Automatic Debiased Machine Learning of Causal and Structural Effects,"
Econometrica, Econometric Society, vol. 90(3), pages 967-1027, May.
- Victor Chernozhukov & Whitney K Newey & Rahul Singh, 2018. "Automatic Debiased Machine Learning of Causal and Structural Effects," Papers 1809.05224, arXiv.org, revised Oct 2022.
- Geeven Geert & van der Laan Mark J. & de Gunst Mathisca C.M., 2012. "Comparison of Targeted Maximum Likelihood and Shrinkage Estimators of Parameters in Gene Networks," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(5), pages 1-29, September.
- Rose Sherri & van der Laan Mark J., 2008. "Simple Optimal Weighting of Cases and Controls in Case-Control Studies," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-26, September.
- Elise D Riley & Torsten B Neilands & Kelly Moore & Jennifer Cohen & David R Bangsberg & Diane Havlir, 2012. "Social, Structural and Behavioral Determinants of Overall Health Status in a Cohort of Homeless and Unstably Housed HIV-Infected Men," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-7, April.
- Lundberg, Ian & Brand, Jennie E. & Jeon, Nanum, 2022. "Researcher reasoning meets computational capacity: Machine learning for social science," SocArXiv s5zc8, Center for Open Science.
- Tuglus Catherine & van der Laan Mark J., 2009. "Modified FDR Controlling Procedure for Multi-Stage Analyses," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-17, February.
- Iván Díaz & Nima S. Hejazi, 2020. "Causal mediation analysis for stochastic interventions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 661-683, July.
- Antoine Chambaz & Mark J. Laan, 2014. "Inference in Targeted Group-Sequential Covariate-Adjusted Randomized Clinical Trials," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 104-140, March.
- Iván Díaz & Alan Hubbard & Anna Decker & Mitchell Cohen, 2015. "Variable Importance and Prediction Methods for Longitudinal Problems with Missing Variables," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-17, March.
- Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
- Gareth Harman & Dakota Kliamovich & Angelica M Morales & Sydney Gilbert & Deanna M Barch & Michael A Mooney & Sarah W Feldstein Ewing & Damien A Fair & Bonnie J Nagel, 2021. "Prediction of suicidal ideation and attempt in 9 and 10 year-old children using transdiagnostic risk features," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-14, May.
- Ernesto Carrella & Richard M. Bailey & Jens Koed Madsen, 2018. "Indirect inference through prediction," Papers 1807.01579, arXiv.org.
- Harsh Parikh & Carlos Varjao & Louise Xu & Eric Tchetgen Tchetgen, 2022. "Validating Causal Inference Methods," Papers 2202.04208, arXiv.org, revised Jul 2022.
- Kaspar Wuthrich & Ying Zhu, 2019. "Omitted variable bias of Lasso-based inference methods: A finite sample analysis," Papers 1903.08704, arXiv.org, revised Sep 2021.
- Rui Wang & Naihua Xiu & Kim-Chuan Toh, 2021. "Subspace quadratic regularization method for group sparse multinomial logistic regression," Computational Optimization and Applications, Springer, vol. 79(3), pages 531-559, July.
- Martin Huber, 2019.
"An introduction to flexible methods for policy evaluation,"
Papers
1910.00641, arXiv.org.
- Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:76:y:2020:i:3:p:1007-1016. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.