IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v2y2006i1n2.html
   My bibliography  Save this article

Statistical Inference for Variable Importance

Author

Listed:
  • van der Laan Mark J.

    (Division of Biostatistics, School of Public Health, University of California, Berkeley)

Abstract

Many statistical problems involve the learning of an importance/effect of a variable for predicting an outcome of interest based on observing a sample of $n$ independent and identically distributed observations on a list of input variables and an outcome. For example, though prediction/machine learning is, in principle, concerned with learning the optimal unknown mapping from input variables to an outcome from the data, the typical reported output is a list of importance measures for each input variable. The approach in prediction has been to learn the unknown optimal predictor from the data and derive, for each of the input variables, the variable importance from the obtained fit. In this article we propose a new approach which involves for each variable separately 1) defining variable importance as a real valued parameter, 2) deriving the efficient influence curve and thereby optimal estimating function for this parameter in the assumed (possibly nonparametric) model, and 3) develop a corresponding double robust locally efficient estimator of this variable importance, obtained by substituting for the nuisance parameters in the optimal estimating function data adaptive estimators. We illustrate this methodology in the context of prediction, and obtain in this manner double robust locally optimal estimators of marginal variable importance, accompanied with p-values and confidence intervals. In addition, we present a model based and machine learning approach to estimate covariate-adjusted variable importance. Finally, we generalize this methodology to variable importance parameters for time-dependent variables.

Suggested Citation

  • van der Laan Mark J., 2006. "Statistical Inference for Variable Importance," The International Journal of Biostatistics, De Gruyter, vol. 2(1), pages 1-33, February.
  • Handle: RePEc:bpj:ijbist:v:2:y:2006:i:1:n:2
    DOI: 10.2202/1557-4679.1008
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1557-4679.1008
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1557-4679.1008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sokbae Lee & Ryo Okui & Yoon†Jae Whang, 2017. "Doubly robust uniform confidence band for the conditional average treatment effect function," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(7), pages 1207-1225, November.
    2. Archer, Kellie J. & Kimes, Ryan V., 2008. "Empirical characterization of random forest variable importance measures," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2249-2260, January.
    3. Pedro Delicado, 2019. "Comments on: Data science, big data and statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 334-337, June.
    4. Alexander Herr, 2010. "Statistics for Categorical Surveys—A New Strategy for Multivariate Classification and Determining Variable Importance," Sustainability, MDPI, vol. 2(2), pages 1-18, February.
    5. Guanbo Wang & Mireille E. Schnitzer & Dick Menzies & Piret Viiklepp & Timothy H. Holtz & Andrea Benedetti, 2020. "Estimating treatment importance in multidrug‐resistant tuberculosis using Targeted Learning: An observational individual patient data network meta‐analysis," Biometrics, The International Biometric Society, vol. 76(3), pages 1007-1016, September.
    6. Elise D Riley & Torsten B Neilands & Kelly Moore & Jennifer Cohen & David R Bangsberg & Diane Havlir, 2012. "Social, Structural and Behavioral Determinants of Overall Health Status in a Cohort of Homeless and Unstably Housed HIV-Infected Men," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-7, April.
    7. Alexander P. Keil & Katie M. O’Brien, 2024. "Considerations and Targeted Approaches to Identifying Bad Actors in Exposure Mixtures," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(2), pages 459-481, July.
    8. Thomas Welchowski & Kelly O. Maloney & Richard Mitchell & Matthias Schmid, 2022. "Techniques to Improve Ecological Interpretability of Black-Box Machine Learning Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(1), pages 175-197, March.
    9. Antoine Chambaz & Mark J. Laan, 2014. "Inference in Targeted Group-Sequential Covariate-Adjusted Randomized Clinical Trials," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 104-140, March.
    10. Masahiro Kato, 2024. "Triple/Debiased Lasso for Statistical Inference of Conditional Average Treatment Effects," Papers 2403.03240, arXiv.org.
    11. Kelechi Igwe & Vaishali Sharda & Trevor Hefley, 2023. "Evaluating the Impact of Future Seasonal Climate Extremes on Crop Evapotranspiration of Maize in Western Kansas Using a Machine Learning Approach," Land, MDPI, vol. 12(8), pages 1-26, July.
    12. Brian D. Williamson & Peter B. Gilbert & Marco Carone & Noah Simon, 2021. "Nonparametric variable importance assessment using machine learning techniques," Biometrics, The International Biometric Society, vol. 77(1), pages 9-22, March.
    13. Geeven Geert & van der Laan Mark J. & de Gunst Mathisca C.M., 2012. "Comparison of Targeted Maximum Likelihood and Shrinkage Estimators of Parameters in Gene Networks," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(5), pages 1-29, September.
    14. Iván Díaz & Alan Hubbard & Anna Decker & Mitchell Cohen, 2015. "Variable Importance and Prediction Methods for Longitudinal Problems with Missing Variables," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-17, March.
    15. Rose Sherri & van der Laan Mark J., 2008. "Simple Optimal Weighting of Cases and Controls in Case-Control Studies," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-26, September.
    16. Tuglus Catherine & van der Laan Mark J., 2011. "Repeated Measures Semiparametric Regression Using Targeted Maximum Likelihood Methodology with Application to Transcription Factor Activity Discovery," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-31, January.
    17. Michael Lechner & Jana Mareckova, 2024. "Comprehensive Causal Machine Learning," Papers 2405.10198, arXiv.org.
    18. Fuliang Deng & Luwei Cao & Fangzhou Li & Lanhui Li & Wang Man & Yijian Chen & Wenfeng Liu & Chaofeng Peng, 2023. "Mapping China’s Changing Gross Domestic Product Distribution Using Remotely Sensed and Point-of-Interest Data with Geographical Random Forest Model," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    19. Tuglus Catherine & van der Laan Mark J., 2009. "Modified FDR Controlling Procedure for Multi-Stage Analyses," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:2:y:2006:i:1:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.