IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v71y2015i4p1090-1100.html
   My bibliography  Save this article

Identifying longitudinal trends within EEG experiments

Author

Listed:
  • Kyle Hasenstab
  • Catherine A. Sugar
  • Donatello Telesca
  • Kevin McEvoy
  • Shafali Jeste
  • Damla Şentürk

Abstract

type="main" xml:lang="en"> Differential brain response to sensory stimuli is very small (a few microvolts) compared to the overall magnitude of spontaneous electroencephalogram (EEG), yielding a low signal-to-noise ratio (SNR) in studies of event-related potentials (ERP). To cope with this phenomenon, stimuli are applied repeatedly and the ERP signals arising from the individual trials are averaged at the subject level. This results in loss of information about potentially important changes in the magnitude and form of ERP signals over the course of the experiment. In this article, we develop a meta-preprocessing step utilizing a moving average of ERP across sliding trial windows, to capture such longitudinal trends. We embed this procedure in a weighted linear mixed effects model to describe longitudinal trends in features such as ERP peak amplitude and latency across trials while adjusting for the inherent heteroskedasticity created at the meta-preprocessing step. The proposed unified framework, including the meta-processing and the weighted linear mixed effects modeling steps, is referred to as MAP-ERP (moving-averaged-processed ERP). We perform simulation studies to assess the performance of MAP-ERP in reconstructing existing longitudinal trends and apply MAP-ERP to data from young children with autism spectrum disorder (ASD) and their typically developing counterparts to examine differences in patterns of implicit learning, providing novel insights about the mechanisms underlying social and/or cognitive deficits in this disorder.

Suggested Citation

  • Kyle Hasenstab & Catherine A. Sugar & Donatello Telesca & Kevin McEvoy & Shafali Jeste & Damla Şentürk, 2015. "Identifying longitudinal trends within EEG experiments," Biometrics, The International Biometric Society, vol. 71(4), pages 1090-1100, December.
  • Handle: RePEc:bla:biomet:v:71:y:2015:i:4:p:1090-1100
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boland, Joanna & Telesca, Donatello & Sugar, Catherine & Jeste, Shafali & Goldbeck, Cameron & Senturk, Damla, 2022. "A study of longitudinal trends in time-frequency transformations of EEG data during a learning experiment," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    2. Cheng‐Han Yu & Meng Li & Colin Noe & Simon Fischer‐Baum & Marina Vannucci, 2023. "Bayesian inference for stationary points in Gaussian process regression models for event‐related potentials analysis," Biometrics, The International Biometric Society, vol. 79(2), pages 629-641, June.
    3. Kyle Hasenstab & Aaron Scheffler & Donatello Telesca & Catherine A. Sugar & Shafali Jeste & Charlotte DiStefano & Damla Şentürk, 2017. "A multi-dimensional functional principal components analysis of EEG data," Biometrics, The International Biometric Society, vol. 73(3), pages 999-1009, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:71:y:2015:i:4:p:1090-1100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.