IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v70y2014i1p247-254.html
   My bibliography  Save this article

Estimating marginal properties of quantitative real-time PCR data using nonlinear mixed models

Author

Listed:
  • Daniel Gerhard
  • Melanie Bremer
  • Christian Ritz

Abstract

No abstract is available for this item.

Suggested Citation

  • Daniel Gerhard & Melanie Bremer & Christian Ritz, 2014. "Estimating marginal properties of quantitative real-time PCR data using nonlinear mixed models," Biometrics, The International Biometric Society, vol. 70(1), pages 247-254, March.
  • Handle: RePEc:bla:biomet:v:70:y:2014:i:1:p:247-254
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/biom.12124
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heiss, Florian & Winschel, Viktor, 2008. "Likelihood approximation by numerical integration on sparse grids," Journal of Econometrics, Elsevier, vol. 144(1), pages 62-80, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhat, Chandra R., 2011. "The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 923-939, August.
    2. S. Bogan Aruoba & Pablo Cuba-Borda & Kenji Higa-Flores & Frank Schorfheide & Sergio Villalvazo, 2021. "Piecewise-Linear Approximations and Filtering for DSGE Models with Occasionally Binding Constraints," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 41, pages 96-120, July.
    3. Florian Heiss, 2016. "Discrete Choice Methods with Simulation," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 688-692, April.
    4. Sándor Zsolt, 2013. "Monte Carlo Simulation in Random Coefficient Logit Models Involving Large Sums," Acta Universitatis Sapientiae, Economics and Business, Sciendo, vol. 1(1), pages 85-108, July.
    5. Matthew Gentzkow & Jesse M. Shapiro & Michael Sinkinson, 2014. "Competition and Ideological Diversity: Historical Evidence from US Newspapers," American Economic Review, American Economic Association, vol. 104(10), pages 3073-3114, October.
    6. Gerstner, Thomas & Griebel, Michael & Holtz, Markus, 2009. "Efficient deterministic numerical simulation of stochastic asset-liability management models in life insurance," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 434-446, June.
    7. Franco Peracchi & Claudio Rossetti, 2022. "A nonlinear dynamic factor model of health and medical treatment," Health Economics, John Wiley & Sons, Ltd., vol. 31(6), pages 1046-1066, June.
    8. Santiago Pereda-Fernández, 2021. "Copula-Based Random Effects Models for Clustered Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 575-588, March.
    9. Silvia Cagnone & Francesco Bartolucci, 2017. "Adaptive Quadrature for Maximum Likelihood Estimation of a Class of Dynamic Latent Variable Models," Computational Economics, Springer;Society for Computational Economics, vol. 49(4), pages 599-622, April.
    10. Patil, Priyadarshan N. & Dubey, Subodh K. & Pinjari, Abdul R. & Cherchi, Elisabetta & Daziano, Ricardo & Bhat, Chandra R., 2017. "Simulation evaluation of emerging estimation techniques for multinomial probit models," Journal of choice modelling, Elsevier, vol. 23(C), pages 9-20.
    11. Florian Heiss & Daniel McFadden & Joachim Winter & Amelie Wuppermann & Bo Zhou, 2016. "Inattention and Switching Costs as Sources of Inertia in Medicare Part D," NBER Working Papers 22765, National Bureau of Economic Research, Inc.
    12. Donald Ngwe, 2017. "Why Outlet Stores Exist: Averting Cannibalization in Product Line Extensions," Marketing Science, INFORMS, vol. 36(4), pages 523-541, July.
    13. Bhat, Chandra R., 2018. "New matrix-based methods for the analytic evaluation of the multivariate cumulative normal distribution function," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 238-256.
    14. Joel L. Horowitz & Lars Nesheim, 2018. "Using penalized likelihood to select parameters in a random coefficients multinomial logit model," CeMMAP working papers CWP29/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. Wang, Kun & Chen, Fu & Yu, Jianyang & Song, Yanping & Ghorbaniasl, Ghader, 2023. "Effect of uncertain operating conditions on the aerodynamic performance of high-pressure axial turbomachinery blades," Energy, Elsevier, vol. 283(C).
    16. Reynaert, Mathias & Verboven, Frank, 2014. "Improving the performance of random coefficients demand models: The role of optimal instruments," Journal of Econometrics, Elsevier, vol. 179(1), pages 83-98.
    17. Sun, Yutec & Ishihara, Masakazu, 2019. "A computationally efficient fixed point approach to dynamic structural demand estimation," Journal of Econometrics, Elsevier, vol. 208(2), pages 563-584.
    18. Maria Polyakova, 2016. "Regulation of Insurance with Adverse Selection and Switching Costs: Evidence from Medicare Part D," American Economic Journal: Applied Economics, American Economic Association, vol. 8(3), pages 165-195, July.
    19. Fox, Jeremy T. & Kim, Kyoo il & Yang, Chenyu, 2016. "A simple nonparametric approach to estimating the distribution of random coefficients in structural models," Journal of Econometrics, Elsevier, vol. 195(2), pages 236-254.
    20. Felix Tintelnot, 2017. "Global Production with Export Platforms," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(1), pages 157-209.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:70:y:2014:i:1:p:247-254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.