IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v63y2007i1p41-49.html
   My bibliography  Save this article

Assessing Differential Gene Expression with Small Sample Sizes in Oligonucleotide Arrays Using a Mean-Variance Model

Author

Listed:
  • Jianhua Hu
  • Fred A. Wright

Abstract

No abstract is available for this item.

Suggested Citation

  • Jianhua Hu & Fred A. Wright, 2007. "Assessing Differential Gene Expression with Small Sample Sizes in Oligonucleotide Arrays Using a Mean-Variance Model," Biometrics, The International Biometric Society, vol. 63(1), pages 41-49, March.
  • Handle: RePEc:bla:biomet:v:63:y:2007:i:1:p:41-49
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2006.00675.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Smyth Gordon K, 2004. "Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-28, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hirakawa, Akihiro & Hamada, Chikuma & Yoshimura, Isao, 2011. "Sample size calculation for a regularized t-statistic in microarray experiments," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 870-875, July.
    2. Qin, Huaizhen & Ouyang, Weiwei, 2015. "Statistical properties of gene–gene correlations in omics experiments," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 206-211.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aaron C Ericsson & J Wade Davis & William Spollen & Nathan Bivens & Scott Givan & Catherine E Hagan & Mark McIntosh & Craig L Franklin, 2015. "Effects of Vendor and Genetic Background on the Composition of the Fecal Microbiota of Inbred Mice," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-19, February.
    2. Sébastien L Floor & Aline Hebrant & Jaime M Pita & Manuel Saiselet & Christophe Trésallet & Frederick Libert & Guy Andry & Jacques E Dumont & Wilma C van Staveren & Carine Maenhaut, 2014. "MiRNA Expression May Account for Chronic but Not for Acute Regulation of mRNA Expression in Human Thyroid Tumor Models," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-9, November.
    3. Bilgrau, Anders Ellern & Eriksen, Poul Svante & Rasmussen, Jakob Gulddahl & Johnsen, Hans Erik & Dybkaer, Karen & Boegsted, Martin, 2016. "GMCM: Unsupervised Clustering and Meta-Analysis Using Gaussian Mixture Copula Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i02).
    4. Hossain, Ahmed & Beyene, Joseph & Willan, Andrew R. & Hu, Pingzhao, 2009. "A flexible approximate likelihood ratio test for detecting differential expression in microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3685-3695, August.
    5. Xiaohong Li & Guy N Brock & Eric C Rouchka & Nigel G F Cooper & Dongfeng Wu & Timothy E O’Toole & Ryan S Gill & Abdallah M Eteleeb & Liz O’Brien & Shesh N Rai, 2017. "A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-22, May.
    6. Nicola J. Armstrong, 2008. "The changing focus of microarray analysis," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 62(3), pages 364-373, August.
    7. Kerr Kathleen F., 2012. "Optimality Criteria for the Design of 2-Color Microarray Studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(1), pages 1-9, January.
    8. Ambroise Jérôme & Bearzatto Bertrand & Robert Annie & Macq Benoit & Gala Jean-Luc, 2012. "Combining Multiple Laser Scans of Spotted Microarrays by Means of a Two-Way ANOVA Model," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-20, February.
    9. J. McClatchy & R. Strogantsev & E. Wolfe & H. Y. Lin & M. Mohammadhosseini & B. A. Davis & C. Eden & D. Goldman & W. H. Fleming & P. Conley & G. Wu & L. Cimmino & H. Mohammed & A. Agarwal, 2023. "Clonal hematopoiesis related TET2 loss-of-function impedes IL1β-mediated epigenetic reprogramming in hematopoietic stem and progenitor cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Elizabeth A Osterndorff-Kahanek & Gayatri R Tiwari & Marcelo F Lopez & Howard C Becker & R Adron Harris & R Dayne Mayfield, 2018. "Long-term ethanol exposure: Temporal pattern of microRNA expression and associated mRNA gene networks in mouse brain," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-25, January.
    11. Alexandra Gyurdieva & Stefan Zajic & Ya-Fang Chang & E. Andres Houseman & Shan Zhong & Jaegil Kim & Michael Nathenson & Thomas Faitg & Mary Woessner & David C. Turner & Aisha N. Hasan & John Glod & Ro, 2022. "Biomarker correlates with response to NY-ESO-1 TCR T cells in patients with synovial sarcoma," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    12. Sora Yoon & Seon-Young Kim & Dougu Nam, 2016. "Improving Gene-Set Enrichment Analysis of RNA-Seq Data with Small Replicates," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-16, November.
    13. Yu Lianbo & Gulati Parul & Fernandez Soledad & Pennell Michael & Kirschner Lawrence & Jarjoura David, 2011. "Fully Moderated T-statistic for Small Sample Size Gene Expression Arrays," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, September.
    14. Sinan Xiong & Jianbiao Zhou & Tze King Tan & Tae-Hoon Chung & Tuan Zea Tan & Sabrina Hui-Min Toh & Nicole Xin Ning Tang & Yunlu Jia & Yi Xiang See & Melissa Jane Fullwood & Takaomi Sanda & Wee-Joo Chn, 2024. "Super enhancer acquisition drives expression of oncogenic PPP1R15B that regulates protein homeostasis in multiple myeloma," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    15. Petra Massoner & Karl G Kugler & Karin Unterberger & Ruprecht Kuner & Laurin A J Mueller & Maria Fälth & Georg Schäfer & Christof Seifarth & Simone Ecker & Irmgard Verdorfer & Armin Graber & Holger Sü, 2013. "Characterization of Transcriptional Changes in ERG Rearrangement-Positive Prostate Cancer Identifies the Regulation of Metabolic Sensors Such as Neuropeptide Y," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-11, February.
    16. Chaofeng Yuan & Wensheng Zhu & Xuming He & Jianhua Guo, 2019. "A mixture factor model with applications to microarray data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 60-76, March.
    17. Debajyoti Ghosh & Lili Ding & Umasundari Sivaprasad & Esmond Geh & Jocelyn Biagini Myers & Jonathan A Bernstein & Gurjit K Khurana Hershey & Tesfaye B Mersha, 2015. "Multiple Transcriptome Data Analysis Reveals Biologically Relevant Atopic Dermatitis Signature Genes and Pathways," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-23, December.
    18. Nan Li & Matthew N. McCall & Zhijin Wu, 2017. "Establishing Informative Prior for Gene Expression Variance from Public Databases," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 160-177, June.
    19. Brian Caffo & Liu Dongmei & Giovanni Parmigiani, 2004. "Power Conjugate Multilevel Models with Applications to Genomics," Johns Hopkins University Dept. of Biostatistics Working Paper Series 1062, Berkeley Electronic Press.
    20. Mark Pinese & Christopher J Scarlett & James G Kench & Emily K Colvin & Davendra Segara & Susan M Henshall & Robert L Sutherland & Andrew V Biankin, 2009. "Messina: A Novel Analysis Tool to Identify Biologically Relevant Molecules in Disease," PLOS ONE, Public Library of Science, vol. 4(4), pages 1-7, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:63:y:2007:i:1:p:41-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.