IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v93y1996i2p346-357.html
   My bibliography  Save this article

Comparative performance of the FSCL neural net and K-means algorithm for market segmentation

Author

Listed:
  • Balakrishnan, P. V. (Sundar)
  • Cooper, Martha C.
  • Jacob, Varghese S.
  • Lewis, Phillip A.

Abstract

No abstract is available for this item.

Suggested Citation

  • Balakrishnan, P. V. (Sundar) & Cooper, Martha C. & Jacob, Varghese S. & Lewis, Phillip A., 1996. "Comparative performance of the FSCL neural net and K-means algorithm for market segmentation," European Journal of Operational Research, Elsevier, vol. 93(2), pages 346-357, September.
  • Handle: RePEc:eee:ejores:v:93:y:1996:i:2:p:346-357
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0377-2217(96)00046-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. (Sundar) Balakrishnan & Martha Cooper & Varghese Jacob & Phillip Lewis, 1994. "A study of the classification capabilities of neural networks using unsupervised learning: A comparison withK-means clustering," Psychometrika, Springer;The Psychometric Society, vol. 59(4), pages 509-525, December.
    2. Glenn Milligan & Martha Cooper, 1985. "An examination of procedures for determining the number of clusters in a data set," Psychometrika, Springer;The Psychometric Society, vol. 50(2), pages 159-179, June.
    3. Glenn Milligan, 1980. "An examination of the effect of six types of error perturbation on fifteen clustering algorithms," Psychometrika, Springer;The Psychometric Society, vol. 45(3), pages 325-342, September.
    4. Glenn Milligan, 1985. "An algorithm for generating artificial test clusters," Psychometrika, Springer;The Psychometric Society, vol. 50(1), pages 123-127, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingoti, Sueli A. & Lima, Joab O., 2006. "Comparing SOM neural network with Fuzzy c-means, K-means and traditional hierarchical clustering algorithms," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1742-1759, November.
    2. Ja-Shen Chen & Russell K H Ching & Yi-Shen Lin, 2004. "An extended study of the K-means algorithm for data clustering and its applications," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 976-987, September.
    3. YongSeog Kim & W. Nick Street & Gary J. Russell & Filippo Menczer, 2005. "Customer Targeting: A Neural Network Approach Guided by Genetic Algorithms," Management Science, INFORMS, vol. 51(2), pages 264-276, February.
    4. Hruschka, Harald & Natter, Martin, 1999. "Comparing performance of feedforward neural nets and K-means for cluster-based market segmentation," European Journal of Operational Research, Elsevier, vol. 114(2), pages 346-353, April.
    5. Pankaj Kumar Medhi & Sandeep Mondal, 2016. "A neural feature extraction model for classification of firms and prediction of outsourcing success: advantage of using relational sources of information for new suppliers," International Journal of Production Research, Taylor & Francis Journals, vol. 54(20), pages 6071-6081, October.
    6. Ozer, Muammer, 2005. "Fuzzy c-means clustering and Internet portals: A case study," European Journal of Operational Research, Elsevier, vol. 164(3), pages 696-714, August.
    7. Mehrdad Roham & Anait R. Gabrielyan & Norman P. Archer & Michel L. Grignon & Byron G. Spencer, 2014. "The Impact Of Technological Intensity Of Service Provision On Physician Expenditures: An Exploratory Investigation," Health Economics, John Wiley & Sons, Ltd., vol. 23(10), pages 1224-1241, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingoti, Sueli A. & Lima, Joab O., 2006. "Comparing SOM neural network with Fuzzy c-means, K-means and traditional hierarchical clustering algorithms," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1742-1759, November.
    2. Goethner, Maximilian & Hornuf, Lars & Regner, Tobias, 2021. "Protecting investors in equity crowdfunding: An empirical analysis of the small investor protection act," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    3. Glenn Milligan & Richard Cheng, 1996. "Measuring the influence of individual data points in a cluster analysis," Journal of Classification, Springer;The Classification Society, vol. 13(2), pages 315-335, September.
    4. Henner Gimpel & Daniel Rau & Maximilian Röglinger, 2018. "Understanding FinTech start-ups – a taxonomy of consumer-oriented service offerings," Electronic Markets, Springer;IIM University of St. Gallen, vol. 28(3), pages 245-264, August.
    5. Michael Brusco & Douglas Steinley, 2015. "Affinity Propagation and Uncapacitated Facility Location Problems," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 443-480, October.
    6. Michael Brusco & Douglas Steinley, 2007. "A Comparison of Heuristic Procedures for Minimum Within-Cluster Sums of Squares Partitioning," Psychometrika, Springer;The Psychometric Society, vol. 72(4), pages 583-600, December.
    7. P. (Sundar) Balakrishnan & Martha Cooper & Varghese Jacob & Phillip Lewis, 1994. "A study of the classification capabilities of neural networks using unsupervised learning: A comparison withK-means clustering," Psychometrika, Springer;The Psychometric Society, vol. 59(4), pages 509-525, December.
    8. Alexander, Corinne E. & Wilson, Christine A. & Foley, Daniel H., 2004. "Agricultural Input Market Segments: Who Is Buying?," 2004 Annual meeting, August 1-4, Denver, CO 19997, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    9. Chen, S. K. & Mangiameli, P. & West, D., 1995. "The comparative ability of self-organizing neural networks to define cluster structure," Omega, Elsevier, vol. 23(3), pages 271-279, June.
    10. Weinand, J.M. & McKenna, R. & Fichtner, W., 2019. "Developing a municipality typology for modelling decentralised energy systems," Utilities Policy, Elsevier, vol. 57(C), pages 75-96.
    11. Ertl, Antal & Horn, Dániel & Kiss, Hubert János, 2024. "Economic Preferences across Generations and Family Clusters: A Comment," I4R Discussion Paper Series 105, The Institute for Replication (I4R).
    12. Douglas Steinley, 2007. "Validating Clusters with the Lower Bound for Sum-of-Squares Error," Psychometrika, Springer;The Psychometric Society, vol. 72(1), pages 93-106, March.
    13. Glenn Milligan & Martha Cooper, 1988. "A study of standardization of variables in cluster analysis," Journal of Classification, Springer;The Classification Society, vol. 5(2), pages 181-204, September.
    14. Bauer, Hans H. & Fischer, Marc, 2000. "Product life cycle patterns for pharmaceuticals and their impact on R&D profitability of late mover products," International Business Review, Elsevier, vol. 9(6), pages 703-725, December.
    15. Maximilian Goethner & Sebastian Luettig & Tobias Regner, 2021. "Crowdinvesting in entrepreneurial projects: disentangling patterns of investor behavior," Small Business Economics, Springer, vol. 57(2), pages 905-926, August.
    16. Cyril Atkinson-Clement & Eléonore Pigalle, 2021. "What can we learn from Covid-19 pandemic’s impact on human behaviour? The case of France’s lockdown," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-12, December.
    17. Johanna Mair & Julie Battilana & Julian Cardenas, 2012. "Organizing for Society: A Typology of Social Entrepreneuring Models," Journal of Business Ethics, Springer, vol. 111(3), pages 353-373, December.
    18. Ja-Shen Chen & Russell K H Ching & Yi-Shen Lin, 2004. "An extended study of the K-means algorithm for data clustering and its applications," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 976-987, September.
    19. Douglas Steinley & Michael Brusco, 2008. "Selection of Variables in Cluster Analysis: An Empirical Comparison of Eight Procedures," Psychometrika, Springer;The Psychometric Society, vol. 73(1), pages 125-144, March.
    20. Abba Krieger & Paul Green, 1999. "A cautionary note on using internal cross validation to select the number of clusters," Psychometrika, Springer;The Psychometric Society, vol. 64(3), pages 341-353, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:93:y:1996:i:2:p:346-357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.