IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v62y2006i1p254-260.html
   My bibliography  Save this article

Random Changepoint Model for Joint Modeling of Cognitive Decline and Dementia

Author

Listed:
  • Hélène Jacqmin-Gadda
  • Daniel Commenges
  • Jean-François Dartigues

Abstract

No abstract is available for this item.

Suggested Citation

  • Hélène Jacqmin-Gadda & Daniel Commenges & Jean-François Dartigues, 2006. "Random Changepoint Model for Joint Modeling of Cognitive Decline and Dementia," Biometrics, The International Biometric Society, vol. 62(1), pages 254-260, March.
  • Handle: RePEc:bla:biomet:v:62:y:2006:i:1:p:254-260
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2005.00443.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheryl L. Faucett & Nathaniel Schenker & Jeremy M. G. Taylor, 2002. "Survival Analysis Using Auxiliary Variables Via Multiple Imputation, with Application to AIDS Clinical Trial Data," Biometrics, The International Biometric Society, vol. 58(1), pages 37-47, March.
    2. Hall, Charles B. & Ying, Jun & Kuo, Lynn & Lipton, Richard B., 2003. "Bayesian and profile likelihood change point methods for modeling cognitive function over time," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 91-109, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel McNeish & Denis Dumas & Dario Torre & Neil Rice, 2022. "Modelling time to maximum competency in medical student progress tests," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2007-2034, October.
    2. Alexander C. McLain & Paul S. Albert, 2014. "Modeling longitudinal data with a random change point and no time-zero: Applications to inference and prediction of the labor curve," Biometrics, The International Biometric Society, vol. 70(4), pages 1052-1060, December.
    3. Chenxi Li & N. Maritza Dowling & Rick Chappell, 2015. "Quantile regression with a change‐point model for longitudinal data: An application to the study of cognitive changes in preclinical alzheimer's disease," Biometrics, The International Biometric Society, vol. 71(3), pages 625-635, September.
    4. Binbing Yu & Pulak Ghosh, 2010. "Joint Modeling for Cognitive Trajectory and Risk of Dementia in the Presence of Death," Biometrics, The International Biometric Society, vol. 66(1), pages 294-300, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Chang & Florescu, Ionut & Zhou, Jinsheng, 2020. "A comparison of pricing models for mineral rights: Copper mine in China," Resources Policy, Elsevier, vol. 65(C).
    2. Layla Parast & Beth Ann Griffin, 2017. "Landmark estimation of survival and treatment effects in observational studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(2), pages 161-182, April.
    3. Lisa M. McCrink & Adele H. Marshall & Karen J. Cairns, 2013. "Advances in Joint Modelling: A Review of Recent Developments with Application to the Survival of End Stage Renal Disease Patients," International Statistical Review, International Statistical Institute, vol. 81(2), pages 249-269, August.
    4. Shirin Moghaddam & John Newell & John Hinde, 2022. "A Bayesian Approach for Imputation of Censored Survival Data," Stats, MDPI, vol. 5(1), pages 1-19, January.
    5. Zhao, L. & Banerjee, M., 2012. "Bayesian piecewise mixture model for racial disparity in prostate cancer progression," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 362-369.
    6. Pérez, C.J. & Martín, J. & Rufo, M.J., 2006. "Sensitivity estimations for Bayesian inference models solved by MCMC methods," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1310-1314.
    7. Chenxi Li & N. Maritza Dowling & Rick Chappell, 2015. "Quantile regression with a change‐point model for longitudinal data: An application to the study of cognitive changes in preclinical alzheimer's disease," Biometrics, The International Biometric Society, vol. 71(3), pages 625-635, September.
    8. Alexander C. McLain & Paul S. Albert, 2014. "Modeling longitudinal data with a random change point and no time-zero: Applications to inference and prediction of the labor curve," Biometrics, The International Biometric Society, vol. 70(4), pages 1052-1060, December.
    9. El-Bassiouni, M. Y. & Charif, H. A., 2004. "Testing a null variance ratio in mixed models with zero degrees of freedom for error," Computational Statistics & Data Analysis, Elsevier, vol. 46(4), pages 707-719, July.
    10. Gebrenegus Ghilagaber & Parfait Munezero, 2020. "Bayesian change-point modelling of the effects of 3-points-for-a-win rule in football," Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(2), pages 248-264, January.
    11. Yun Li & Jeremy M. G. Taylor & Roderick J. A. Little, 2011. "A Shrinkage Approach for Estimating a Treatment Effect Using Intermediate Biomarker Data in Clinical Trials," Biometrics, The International Biometric Society, vol. 67(4), pages 1434-1441, December.
    12. Perez, C.J. & Martin, J. & Rufo, M.J., 2006. "MCMC-based local parametric sensitivity estimations," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 823-835, November.
    13. Getachew A. Dagne, 2021. "Bayesian Quantile Bent-Cable Growth Models for Longitudinal Data with Skewness and Detection Limit," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(1), pages 129-141, April.
    14. G. Muniz Terrera & A. van den Hout & F. E. Matthews, 2011. "Random change point models: investigating cognitive decline in the presence of missing data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(4), pages 705-716, November.
    15. Yidan Shi & Leilei Zeng & Mary E. Thompson & Suzanne L. Tyas, 2021. "Augmented likelihood for incorporating auxiliary information into left-truncated data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(3), pages 460-480, July.
    16. Wen Ye & Jeremy M.G. Taylor & Xihong Lin, 2010. "The authors replied as follows:," Biometrics, The International Biometric Society, vol. 66(3), pages 987-991, September.
    17. van den Hout, Ardo & Muniz-Terrera, Graciela & Matthews, Fiona E., 2013. "Change point models for cognitive tests using semi-parametric maximum likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 684-698.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:62:y:2006:i:1:p:254-260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.