IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v59y2003i1p76-82.html
   My bibliography  Save this article

Bayesian Multiple Testing for Two-Sample Multivariate Endpoints

Author

Listed:
  • Mithat Gönen
  • Peter H. Westfall
  • Wesley O. Johnson

Abstract

No abstract is available for this item.

Suggested Citation

  • Mithat Gönen & Peter H. Westfall & Wesley O. Johnson, 2003. "Bayesian Multiple Testing for Two-Sample Multivariate Endpoints," Biometrics, The International Biometric Society, vol. 59(1), pages 76-82, March.
  • Handle: RePEc:bla:biomet:v:59:y:2003:i:1:p:76-82
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/1541-0420.00009
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter F. Thall & Richard M. Simon & Yu Shen, 2000. "Approximate Bayesian Evaluation of Multiple Treatment Effects," Biometrics, The International Biometric Society, vol. 56(1), pages 213-219, March.
    2. Yoav Benjamini & Yosef Hochberg, 2000. "On the Adaptive Control of the False Discovery Rate in Multiple Testing With Independent Statistics," Journal of Educational and Behavioral Statistics, , vol. 25(1), pages 60-83, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hai Shu & Bin Nan & Robert Koeppe, 2015. "Multiple testing for neuroimaging via hidden Markov random field," Biometrics, The International Biometric Society, vol. 71(3), pages 741-750, September.
    2. J.L. Dowling & D.A. Luther & P.P. Marra, 2012. "Comparative effects of urban development and anthropogenic noise on bird songs," Behavioral Ecology, International Society for Behavioral Ecology, vol. 23(1), pages 201-209.
    3. Shigeyuki Matsui & Hisashi Noma, 2011. "Estimating Effect Sizes of Differentially Expressed Genes for Power and Sample-Size Assessments in Microarray Experiments," Biometrics, The International Biometric Society, vol. 67(4), pages 1225-1235, December.
    4. Döhler, Sebastian, 2018. "A discrete modification of the Benjamini–Yekutieli procedure," Econometrics and Statistics, Elsevier, vol. 5(C), pages 137-147.
    5. Mitter, Hermine & Schmid, Erwin, 2019. "Computing the economic value of climate information for water stress management exemplified by crop production in Austria," Agricultural Water Management, Elsevier, vol. 221(C), pages 430-448.
    6. Cai, Qingyun, 2018. "A scoring criterion for rejection of clustered p-values," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 180-189.
    7. Haibing Zhao & Wing Kam Fung, 2018. "Controlling mixed directional false discovery rate in multidimensional decisions with applications to microarray studies," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 316-337, June.
    8. Rohit Kumar Patra & Bodhisattva Sen, 2016. "Estimation of a two-component mixture model with applications to multiple testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 869-893, September.
    9. Ferreira José A. & Berkhof Johannes & Souverein Olga & Zwinderman Koos, 2009. "A Multiple Testing Approach to High-Dimensional Association Studies with an Application to the Detection of Associations between Risk Factors of Heart Disease and Genetic Polymorphisms," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-58, January.
    10. Long Qu & Dan Nettleton & Jack C. M. Dekkers, 2012. "Improved Estimation of the Noncentrality Parameter Distribution from a Large Number of t-Statistics, with Applications to False Discovery Rate Estimation in Microarray Data Analysis," Biometrics, The International Biometric Society, vol. 68(4), pages 1178-1187, December.
    11. Wenguang Sun & T. Tony Cai, 2009. "Large‐scale multiple testing under dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 393-424, April.
    12. Helmut Finner & Veronika Gontscharuk, 2009. "Controlling the familywise error rate with plug‐in estimator for the proportion of true null hypotheses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 1031-1048, November.
    13. Danya Lagos, 2018. "Looking at Population Health Beyond “Male” and “Female”: Implications of Transgender Identity and Gender Nonconformity for Population Health," Demography, Springer;Population Association of America (PAA), vol. 55(6), pages 2097-2117, December.
    14. Robert R. Delongchamp & John F. Bowyer & James J. Chen & Ralph L. Kodell, 2004. "Multiple-Testing Strategy for Analyzing cDNA Array Data on Gene Expression," Biometrics, The International Biometric Society, vol. 60(3), pages 774-782, September.
    15. Shuai Yu & Yuanhua Jia & Dongye Sun, 2019. "Identifying Factors that Influence the Patterns of Road Crashes Using Association Rules: A case Study from Wisconsin, United States," Sustainability, MDPI, vol. 11(7), pages 1-14, April.
    16. Guo Wenge & Peddada Shyamal, 2008. "Adaptive Choice of the Number of Bootstrap Samples in Large Scale Multiple Testing," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-21, March.
    17. Christina C. Bartenschlager & Jens O. Brunner, 2019. "Reaching for the stars: attention to multiple testing problems and method recommendations using simulation for business research," Journal of Business Economics, Springer, vol. 89(4), pages 447-479, June.
    18. David Ruppert & Dan Nettleton & J. T. Gene Hwang, 2007. "Exploring the Information in p-Values for the Analysis and Planning of Multiple-Test Experiments," Biometrics, The International Biometric Society, vol. 63(2), pages 483-495, June.
    19. Alessio Farcomeni, 2009. "Generalized Augmentation to Control the False Discovery Exceedance in Multiple Testing," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 501-517, September.
    20. Tim Bancroft & Chuanlong Du & Dan Nettleton, 2013. "Estimation of False Discovery Rate Using Sequential Permutation p-Values," Biometrics, The International Biometric Society, vol. 69(1), pages 1-7, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:59:y:2003:i:1:p:76-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.