IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v56y2000i4p1068-1075.html
   My bibliography  Save this article

Distinguishing Effects on Tumor Multiplicity and Growth Rate in Chemoprevention Experiments

Author

Listed:
  • David B. Dunson
  • Gregg E. Dinse

Abstract

No abstract is available for this item.

Suggested Citation

  • David B. Dunson & Gregg E. Dinse, 2000. "Distinguishing Effects on Tumor Multiplicity and Growth Rate in Chemoprevention Experiments," Biometrics, The International Biometric Society, vol. 56(4), pages 1068-1075, December.
  • Handle: RePEc:bla:biomet:v:56:y:2000:i:4:p:1068-1075
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.0006-341X.2000.01068.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. B. Dunson, 2000. "Corrigendum: Models for papilloma multiplicity and regression: applications to transgenic mouse studies," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(3), pages 421-422.
    2. D. B. Dunson, 2000. "Models for papilloma multiplicity and regression: applications to transgenic mouse studies," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(1), pages 19-30.
    3. D. B. Dunson & J. K. Haseman, 1999. "Modeling Tumor Onset and Multiplicity Using Transition Models with Latent Variables," Biometrics, The International Biometric Society, vol. 55(3), pages 965-970, September.
    4. W. R. Gilks & P. Wild, 1992. "Adaptive Rejection Sampling for Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 337-348, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael L. Pennell & David B. Dunson, 2006. "Bayesian Semiparametric Dynamic Frailty Models for Multiple Event Time Data," Biometrics, The International Biometric Society, vol. 62(4), pages 1044-1052, December.
    2. David B. Dunson & Donna D. Baird, 2002. "A Proportional Hazards Model for Incidence and Induced Remission of Disease," Biometrics, The International Biometric Society, vol. 58(1), pages 71-78, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David B. Dunson & Donna D. Baird, 2002. "A Proportional Hazards Model for Incidence and Induced Remission of Disease," Biometrics, The International Biometric Society, vol. 58(1), pages 71-78, March.
    2. Debajyoti Sinha & Tapabrata Maiti, 2004. "A Bayesian Approach for the Analysis of Panel-Count Data with Dependent Termination," Biometrics, The International Biometric Society, vol. 60(1), pages 34-40, March.
    3. Paul S. Albert & Joanna H. Shih, 2003. "Modeling Tumor Growth with Random Onset," Biometrics, The International Biometric Society, vol. 59(4), pages 897-906, December.
    4. Tamara Broderick & Robert Gramacy, 2011. "Classification and Categorical Inputs with Treed Gaussian Process Models," Journal of Classification, Springer;The Classification Society, vol. 28(2), pages 244-270, July.
    5. A. John Bailer & Walter W. Piegorsch, 2000. "From Quantal Counts to Mechanisms and Systems: The Past, Present, and Future of Biometrics in Environmental Toxicology," Biometrics, The International Biometric Society, vol. 56(2), pages 327-336, June.
    6. Pang, W. K. & Yang, Z. H. & Hou, S. H. & Leung, P. K., 2002. "Non-uniform random variate generation by the vertical strip method," European Journal of Operational Research, Elsevier, vol. 142(3), pages 595-609, November.
    7. Roy, Vivekananda, 2014. "Efficient estimation of the link function parameter in a robust Bayesian binary regression model," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 87-102.
    8. Wu, Lang, 2007. "A computationally efficient method for nonlinear mixed-effects models with nonignorable missing data in time-varying covariates," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2410-2419, February.
    9. Zhong, Peng & Huser, Raphaël & Opitz, Thomas, 2024. "Exact Simulation of Max-Infinitely Divisible Processes," Econometrics and Statistics, Elsevier, vol. 30(C), pages 96-109.
    10. Cai, Bo & Lin, Xiaoyan & Wang, Lianming, 2011. "Bayesian proportional hazards model for current status data with monotone splines," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2644-2651, September.
    11. Samantha Leorato & Maura Mezzetti, 2015. "Spatial Panel Data Model with error dependence: a Bayesian Separable Covariance Approach," CEIS Research Paper 338, Tor Vergata University, CEIS, revised 09 Apr 2015.
    12. Griffin, J. E. & Steel, M. F. J., 2004. "Semiparametric Bayesian inference for stochastic frontier models," Journal of Econometrics, Elsevier, vol. 123(1), pages 121-152, November.
    13. O’Neill, Donal, 2015. "Measuring obesity in the absence of a gold standard," Economics & Human Biology, Elsevier, vol. 17(C), pages 116-128.
    14. Susanne Gschlößl & Claudia Czado, 2008. "Modelling count data with overdispersion and spatial effects," Statistical Papers, Springer, vol. 49(3), pages 531-552, July.
    15. Jung, Hohyun, 2023. "Eliminating the biases of user influence and item popularity in bipartite networks: A case study of Flickr and Netflix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    16. Katherine A. Guthrie & Lianne Sheppard & Jon Wakefield, 2002. "A Hierarchical Aggregate Data Model with Spatially Correlated Disease Rates," Biometrics, The International Biometric Society, vol. 58(4), pages 898-905, December.
    17. Loddo, Antonello & Ni, Shawn & Sun, Dongchu, 2011. "Selection of Multivariate Stochastic Volatility Models via Bayesian Stochastic Search," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 342-355.
    18. Z. Rezaei Ghahroodi & M. Ganjali, 2013. "A Bayesian approach for analysing longitudinal nominal outcomes using random coefficients transitional generalized logit model: an application to the labour force survey data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(7), pages 1425-1445, July.
    19. Dani Gamerman & Luigi Ippoliti & Pasquale Valentini, 2022. "A dynamic structural equation approach to estimate the short‐term effects of air pollution on human health," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 739-769, June.
    20. Anis Fradi & Chafik Samir & Ines Adouani, 2024. "A New Bayesian Approach to Global Optimization on Parametrized Surfaces in $$\mathbb {R}^{3}$$ R 3," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1077-1100, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:56:y:2000:i:4:p:1068-1075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.