IDEAS home Printed from https://ideas.repec.org/a/bfr/rueban/201739.html
   My bibliography  Save this article

Construction crises and business cycle: consequences for GDP forecasts

Author

Listed:
  • E. Monnet
  • C. Thubin

Abstract

How do we take into account the specificities of the construction sector to forecast GDP growth? Construction activity is usually highly correlated with the economic cycle, both upswings and downswings. However, during construction-specific crises, its developments differ markedly from those of the other sectors as in the early 1990s and from 2011 to 2015. The risk of making a construction-related error when forecasting GDP then increases for forecasting models that are mainly or exclusively based on manufacturing surveys - as is the case with the current quarter forecasting model (ISMA) at the Banque de France. A "safeguard" model, which isolates the value added of each sector, has been constructed to overcome this type of limitation and thus improve the results.

Suggested Citation

  • E. Monnet & C. Thubin, 2017. "Construction crises and business cycle: consequences for GDP forecasts," Rue de la Banque, Banque de France, issue 39, february..
  • Handle: RePEc:bfr:rueban:2017:39
    as

    Download full text from publisher

    File URL: https://publications.banque-france.fr/sites/default/files/medias/documents/rue-de-la-banque_39_2017-02_en.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. C. Thubin & T. Ferrière & E. Monnet & M. Marx & V. Oung, 2016. "The PRISME model: can disaggregation on the production side help to forecast GDP?," Working papers 596, Banque de France.
    2. E. Monnet & C. Wolf, 2016. "Demographic Cycle, Migration and Housing Investment: a Causal Examination," Working papers 591, Banque de France.
    3. Mogliani, Matteo & Darné, Olivier & Pluyaud, Bertrand, 2017. "The new MIBA model: Real-time nowcasting of French GDP using the Banque de France's monthly business survey," Economic Modelling, Elsevier, vol. 64(C), pages 26-39.
    4. Bec, Frédérique & Mogliani, Matteo, 2015. "Nowcasting French GDP in real-time with surveys and “blocked” regressions: Combining forecasts or pooling information?," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1021-1042.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hippolyte d’Albis & Élodie Djemaï, 2018. "Évolutions démographiques et marché de l’immobilier neuf," Revue d'économie régionale et urbaine, Armand Colin, vol. 0(1), pages 129-180.
    2. Kenichiro McAlinn, 2021. "Mixed‐frequency Bayesian predictive synthesis for economic nowcasting," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1143-1163, November.
    3. Mogliani, Matteo & Darné, Olivier & Pluyaud, Bertrand, 2017. "The new MIBA model: Real-time nowcasting of French GDP using the Banque de France's monthly business survey," Economic Modelling, Elsevier, vol. 64(C), pages 26-39.
    4. repec:hal:spmain:info:hdl:2441/6afik52jg80mqni27nbeb4p76 is not listed on IDEAS
    5. Bec, Frédérique & Mogliani, Matteo, 2015. "Nowcasting French GDP in real-time with surveys and “blocked” regressions: Combining forecasts or pooling information?," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1021-1042.
    6. Boriss Siliverstovs, 2017. "Short-term forecasting with mixed-frequency data: a MIDASSO approach," Applied Economics, Taylor & Francis Journals, vol. 49(13), pages 1326-1343, March.
    7. C. Thubin & T. Ferrière & E. Monnet & M. Marx & V. Oung, 2016. "The PRISME model: can disaggregation on the production side help to forecast GDP?," Working papers 596, Banque de France.
    8. Cyrille Lenoel & Garry Young, 2020. "Real-time turning point indicators: Review of current international practices," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2020-05, Economic Statistics Centre of Excellence (ESCoE).
    9. Christian Gayer & Alessandro Girardi & Andreas Reuter, 2016. "Replacing Judgment by Statistics: Constructing Consumer Confidence Indicators on the basis of Data-driven Techniques. The Case of the Euro Area," Working Papers LuissLab 16125, Dipartimento di Economia e Finanza, LUISS Guido Carli.
    10. Mogliani, Matteo & Simoni, Anna, 2021. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Journal of Econometrics, Elsevier, vol. 222(1), pages 833-860.
    11. Clément Bortoli & Stéphanie Combes & Thomas Renault, 2018. "Nowcasting GDP Growth by Reading the Newspapers," Economie et Statistique / Economics and Statistics, Institut National de la Statistique et des Etudes Economiques (INSEE), issue 505-506, pages 17-33.
    12. Bańbura, Marta & Belousova, Irina & Bodnár, Katalin & Tóth, Máté Barnabás, 2023. "Nowcasting employment in the euro area," Working Paper Series 2815, European Central Bank.
    13. Shrub, Yuliya & Rieger, Jonas & Müller, Henrik & Jentsch, Carsten, 2022. "Text data rule - don't they? A study on the (additional) information of Handelsblatt data for nowcasting German GDP in comparison to established economic indicators," Ruhr Economic Papers 964, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    14. Tomas Adam & Filip Novotny, 2018. "Assessing the External Demand of the Czech Economy: Nowcasting Foreign GDP Using Bridge Equations," Working Papers 2018/18, Czech National Bank.
    15. Cobb, Marcus P A, 2018. "Improving Underlying Scenarios for Aggregate Forecasts: A Multi-level Combination Approach," MPRA Paper 88593, University Library of Munich, Germany.
    16. Carlos León & Fabio Ortega, 2018. "Nowcasting Economic Activity with Electronic Payments Data: A Predictive Modeling Approach," Revista de Economía del Rosario, Universidad del Rosario, vol. 21(2), pages 381-407, December.
    17. Valérie Chauvin & John Muellbauer, 2018. "Consumption, household portfolios and the housing market in France," Economie et Statistique / Economics and Statistics, Institut National de la Statistique et des Etudes Economiques (INSEE), issue 500-501-5, pages 157-178.
    18. Daniel Roash & Tanya Suhoy, 2019. "Sentiment Indicators Based on a Short Business Tendency Survey," Bank of Israel Working Papers 2019.11, Bank of Israel.
    19. M. Mogliani & T. Ferrière, 2016. "Rationality of announcements, business cycle asymmetry, and predictability of revisions. The case of French GDP," Working papers 600, Banque de France.
    20. Éric Monnet & Clara Wolf, 2017. "Is demographics the housing cycle?," Rue de la Banque, Banque de France, issue 41, april..
    21. Gerardin Mathilde, & Ranvier Martial., 2021. "Enrichment of the Banque de France’s monthly business survey: lessons from textual analysis of business leaders’ comments," Working papers 821, Banque de France.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bfr:rueban:2017:39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael brassart (email available below). General contact details of provider: https://edirc.repec.org/data/bdfgvfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.