IDEAS home Printed from https://ideas.repec.org/a/bes/jnlbes/v14y1996i4p447-59.html
   My bibliography  Save this article

An Exponential-Family Multidimensional Scaling Mixture Methodology

Author

Listed:
  • Wedel, Michel
  • DeSarbo, Wayne S

Abstract

A multidimensional scaling methodology (STUNMIX) for the analysis of subjects preference/choice of stimuli is presented, which integrates previous models into a single framework. Locations of the stimuli and the ideal-points of derived segments of subjects on latent dimensions are estimated simultaneously. The methodology is formulated in the framework of the exponential family of distributions. Possible reparametrizations of stimulus coordinates by stimulus characteristics, as well as of probabilities of segment membership by subject background variables, are permitted. The models are estimated in a maximum likelihood framework.

Suggested Citation

  • Wedel, Michel & DeSarbo, Wayne S, 1996. "An Exponential-Family Multidimensional Scaling Mixture Methodology," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 447-459, October.
  • Handle: RePEc:bes:jnlbes:v:14:y:1996:i:4:p:447-59
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. DeSarbo, Wayne S. & Selin Atalay, A. & Blanchard, Simon J., 2009. "A three-way clusterwise multidimensional unfolding procedure for the spatial representation of context dependent preferences," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3217-3230, June.
    2. Junghyun Park & Minki Kim & Pradeep K Chintagunta, 2022. "Mapping Consumers’ Context-Dependent Consumption Preferences: A Multidimensional Unfolding Approach [An Empirical Comparison of Logit Choice Models with Discrete versus Continuous Representations o," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 49(2), pages 202-228.
    3. Joonwook Park & Wayne DeSarbo & John Liechty, 2008. "A Hierarchical Bayesian Multidimensional Scaling Methodology for Accommodating Both Structural and Preference Heterogeneity," Psychometrika, Springer;The Psychometric Society, vol. 73(3), pages 451-472, September.
    4. DeSarbo, Wayne S. & Kim, Youngchan & Wedel, Michel & Fong, Duncan K. H., 1998. "A Bayesian approach to the spatial representation of market structure from consumer choice data," European Journal of Operational Research, Elsevier, vol. 111(2), pages 285-305, December.
    5. Wayne S. DeSarbo & Alexandru M. Degeratu & Michel Wedel & M. Kim Saxton, 2001. "The Spatial Representation of Market Information," Marketing Science, INFORMS, vol. 20(4), pages 426-441, June.
    6. Tammo H.A. Bijmolt & Michel Wedel & Wayne S. DeSarbo, 2021. "Adaptive Multidimensional Scaling: Brand Positioning Based on Decision Sets and Dissimilarity Judgments," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 8(1), pages 1-15, June.
    7. Joonwook Park & Priyali Rajagopal & Wayne DeSarbo, 2012. "A New Heterogeneous Multidimensional Unfolding Procedure," Psychometrika, Springer;The Psychometric Society, vol. 77(2), pages 263-287, April.
    8. Wayne DeSarbo & Robert Madrigal, 2012. "Exploring the Demand Aspects of Sports Consumption and Fan Avidity," Interfaces, INFORMS, vol. 42(2), pages 199-212, April.
    9. Martin Natter & Andreas Mild & Udo Wagner & Alfred Taudes, 2008. "—Planning New Tariffs at tele.ring: The Application and Impact of an Integrated Segmentation, Targeting, and Positioning Tool," Marketing Science, INFORMS, vol. 27(4), pages 600-609, 07-08.
    10. Michel Wedel, 2001. "Computing the Standards Errors of Mixture Model Parameters with EM when Classes are Well Separated," Computational Statistics, Springer, vol. 16(4), pages 539-558, December.
    11. J. Vera & Rodrigo Macías & Willem Heiser, 2013. "Cluster Differences Unfolding for Two-Way Two-Mode Preference Rating Data," Journal of Classification, Springer;The Classification Society, vol. 30(3), pages 370-396, October.
    12. Rick L. Andrews & Ajay K. Manrai, 1999. "MDS Maps for Product Attributes and Market Response: An Application to Scanner Panel Data," Marketing Science, INFORMS, vol. 18(4), pages 584-604.
    13. J. Vera & Rodrigo Macías & Willem Heiser, 2009. "A Latent Class Multidimensional Scaling Model for Two-Way One-Mode Continuous Rating Dissimilarity Data," Psychometrika, Springer;The Psychometric Society, vol. 74(2), pages 297-315, June.
    14. Douglas Clarkson & Richard Gonzalez, 2001. "Random effects diagonal metric multidimensional scaling models," Psychometrika, Springer;The Psychometric Society, vol. 66(1), pages 25-43, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:14:y:1996:i:4:p:447-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jbes/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.