IDEAS home Printed from https://ideas.repec.org/a/bes/jnlasa/v96y2001mjunep368-381.html
   My bibliography  Save this article

A Bayesian Lifetime Model for the

Author

Listed:
  • Bradlow E. T
  • Fader P. S

Abstract

No abstract is available for this item.

Suggested Citation

  • Bradlow E. T & Fader P. S, 2001. "A Bayesian Lifetime Model for the," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 368-381, June.
  • Handle: RePEc:bes:jnlasa:v:96:y:2001:m:june:p:368-381
    as

    Download full text from publisher

    File URL: http://www.ingentaconnect.com/content/asa/jasa/2001/00000096/00000454/art00002
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zan Huang & Daniel D. Zeng & Hsinchun Chen, 2007. "Analyzing Consumer-Product Graphs: Empirical Findings and Applications in Recommender Systems," Management Science, INFORMS, vol. 53(7), pages 1146-1164, July.
    2. Sudip Bhattacharjee & Ram D. Gopal & Kaveepan Lertwachara & James R. Marsden & Rahul Telang, 2007. "The Effect of Digital Sharing Technologies on Music Markets: A Survival Analysis of Albums on Ranking Charts," Management Science, INFORMS, vol. 53(9), pages 1359-1374, September.
    3. Sudip Bhattacharjee & Ram D. Gopal & Kaveepan Lertwachara & James R. Marsden & Rahul Telang, 2005. "The Effect of P2P File Sharing on Music Markets: A Survival Analysis of Albums on Ranking Charts," Working Papers 05-26, NET Institute, revised Oct 2005.
    4. Eric T. Bradlow & Young-Hoon Park, 2007. "Bayesian Estimation of Bid Sequences in Internet Auctions Using a Generalized Record-Breaking Model," Marketing Science, INFORMS, vol. 26(2), pages 218-229, 03-04.
    5. Aloys Prinz, 2017. "Rankings as coordination games: the Dutch Top 2000 pop song ranking," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 41(4), pages 379-401, November.
    6. Daniel Kaimann & Ilka Tanneberg & Joe Cox, 2021. "“I will survive”: Online streaming and the chart survival of music tracks," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 42(1), pages 3-20, January.
    7. Andrea Ordanini & Joseph C. Nunes & Anastasia Nanni, 2018. "The featuring phenomenon in music: how combining artists of different genres increases a song’s popularity," Marketing Letters, Springer, vol. 29(4), pages 485-499, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:96:y:2001:m:june:p:368-381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.