IDEAS home Printed from https://ideas.repec.org/a/bes/jnlasa/v103i484y2008p1693-1704.html
   My bibliography  Save this article

Multiply Robust Inference for Statistical Interactions

Author

Listed:
  • Vansteelandt, Stijn
  • VanderWeele, Tyler J.
  • Tchetgen, Eric J.
  • Robins, James M.

Abstract

No abstract is available for this item.

Suggested Citation

  • Vansteelandt, Stijn & VanderWeele, Tyler J. & Tchetgen, Eric J. & Robins, James M., 2008. "Multiply Robust Inference for Statistical Interactions," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1693-1704.
  • Handle: RePEc:bes:jnlasa:v:103:i:484:y:2008:p:1693-1704
    as

    Download full text from publisher

    File URL: http://pubs.amstat.org/doi/abs/10.1198/016214508000001084
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhilan Lou & Jun Shao & Menggang Yu, 2018. "Optimal treatment assignment to maximize expected outcome with multiple treatments," Biometrics, The International Biometric Society, vol. 74(2), pages 506-516, June.
    2. Lucia Babino & Andrea Rotnitzky & James Robins, 2019. "Multiple robust estimation of marginal structural mean models for unconstrained outcomes," Biometrics, The International Biometric Society, vol. 75(1), pages 90-99, March.
    3. Zihuai He & Min Zhang & Seunggeun Lee & Jennifer A. Smith & Sharon L. R. Kardia & V. Diez Roux & Bhramar Mukherjee, 2017. "Set-Based Tests for the Gene–Environment Interaction in Longitudinal Studies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 966-978, July.
    4. Stijn Vansteelandt & Oliver Dukes, 2022. "Assumption‐lean inference for generalised linear model parameters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 657-685, July.
    5. VanderWeele Tyler J, 2010. "Epistatic Interactions," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-24, January.
    6. Michael C. Knaus & Michael Lechner & Anthony Strittmatter, 2022. "Heterogeneous Employment Effects of Job Search Programs: A Machine Learning Approach," Journal of Human Resources, University of Wisconsin Press, vol. 57(2), pages 597-636.
    7. James Y. Dai & C. Jason Liang & Michael LeBlanc & Ross L. Prentice & Holly Janes, 2018. "Case†only approach to identifying markers predicting treatment effects on the relative risk scale," Biometrics, The International Biometric Society, vol. 74(2), pages 753-763, June.
    8. Ting Ye & Ashkan Ertefaie & James Flory & Sean Hennessy & Dylan S. Small, 2023. "Instrumented difference‐in‐differences," Biometrics, The International Biometric Society, vol. 79(2), pages 569-581, June.
    9. Eric J. Tchetgen Tchetgen & James Robins, 2010. "The Semiparametric Case-Only Estimator," Biometrics, The International Biometric Society, vol. 66(4), pages 1138-1144, December.
    10. Peisong Han, 2016. "Combining Inverse Probability Weighting and Multiple Imputation to Improve Robustness of Estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 246-260, March.
    11. Shuai Chen & Lu Tian & Tianxi Cai & Menggang Yu, 2017. "A general statistical framework for subgroup identification and comparative treatment scoring," Biometrics, The International Biometric Society, vol. 73(4), pages 1199-1209, December.
    12. Ryan Sun & Raymond J. Carroll & David C. Christiani & Xihong Lin, 2018. "Testing for gene–environment interaction under exposure misspecification," Biometrics, The International Biometric Society, vol. 74(2), pages 653-662, June.
    13. Karel Vermeulen & Stijn Vansteelandt, 2015. "Bias-Reduced Doubly Robust Estimation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1024-1036, September.
    14. VanderWeele Tyler J, 2010. "Attributable Fractions for Sufficient Cause Interactions," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-28, February.
    15. Tyler J. VanderWeele & Yu Chen & Habibul Ahsan, 2011. "Inference for Causal Interactions for Continuous Exposures under Dichotomization," Biometrics, The International Biometric Society, vol. 67(4), pages 1414-1421, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:103:i:484:y:2008:p:1693-1704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.