IDEAS home Printed from https://ideas.repec.org/a/bcp/journl/v8y2024i6p2276-2282.html
   My bibliography  Save this article

An Ensemble Machine Learning Model to Detect Tax Fraud: Conceptual Framework

Author

Listed:
  • Kudzanai Charity Muchuchuti

    (Lecturer, BA ISAGO University, Department of Accounting and Finance, Botswana)

Abstract

Most governments throughout the world, especially in developing and underdeveloped countries, depend more on tax revenue to fund public expenditure and investments. In the wake of Covid19, even governments that did not depend largely on tax revenue are forced to do that since their other sources of income were affected by the pandemic as borders were closed and nations were on lockdowns. Research, however, has shown that tax fraud is rampant especially in less developed countries. Traditional methods of detecting tax fraud are costly and they largely depend on the experts’ past experience. This renders them less effective where new mechanisms of tax fraud are involved. In this work I provide a conceptual framework on the use of ensemble machine learning models to detect tax fraud. I use decision trees, support vector machines and logistic regression as the base models. I hypothesize that ensemble methods outperform unsupervised machine learning models and the use of a single algorithm under supervised machine learning models. The outcomes of this research will serve to provide a framework that will help tax authorities to detect tax fraud thereby increasing the revenue collected.

Suggested Citation

  • Kudzanai Charity Muchuchuti, 2024. "An Ensemble Machine Learning Model to Detect Tax Fraud: Conceptual Framework," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(6), pages 2276-2282, June.
  • Handle: RePEc:bcp:journl:v:8:y:2024:i:6:p:2276-2282
    as

    Download full text from publisher

    File URL: https://www.rsisinternational.org/journals/ijriss/Digital-Library/volume-8-issue-6/2276-2282.pdf
    Download Restriction: no

    File URL: https://rsisinternational.org/journals/ijriss/articles/an-ensemble-machine-learning-model-to-detect-tax-fraud-conceptual-framework/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. César Pérez López & María Jesús Delgado Rodríguez & Sonia de Lucas Santos, 2019. "Tax Fraud Detection through Neural Networks: An Application Using a Sample of Personal Income Taxpayers," Future Internet, MDPI, vol. 11(4), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Camino González Vasco & María Jesús Delgado Rodríguez & Sonia de Lucas Santos, 2021. "Segmentation of Potential Fraud Taxpayers and Characterization in Personal Income Tax Using Data Mining Techniques," Hacienda Pública Española / Review of Public Economics, IEF, vol. 239(4), pages 127-157, November.
    2. Carmen De-Pablos-Heredero, 2019. "Future Intelligent Systems and Networks," Future Internet, MDPI, vol. 11(6), pages 1-2, June.
    3. César Pérez López & María Jesús Delgado Rodríguez & Sonia de Lucas Santos, 2023. "Modelización de los factores que afectan al fraude fiscal con técnicas de minería de datos: aplicación al Impuesto de la Renta en España," Hacienda Pública Española / Review of Public Economics, IEF, vol. 246(3), pages 137-164, September.
    4. Belle Fille Murorunkwere & Origene Tuyishimire & Dominique Haughton & Joseph Nzabanita, 2022. "Fraud Detection Using Neural Networks: A Case Study of Income Tax," Future Internet, MDPI, vol. 14(6), pages 1-14, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bcp:journl:v:8:y:2024:i:6:p:2276-2282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Pawan Verma (email available below). General contact details of provider: https://rsisinternational.org/journals/ijriss/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.