IDEAS home Printed from https://ideas.repec.org/a/avo/emipdu/v33y2024i1p65-88.html
   My bibliography  Save this article

The Impact Of Selected Macroeconomic Variables On House Prices In Croatia

Author

Listed:
  • Manuel Benazic

    (Juraj Dobrila University of Pula, Faculty of Economics and Tourism "Dr. Mijo Mirkovic")

  • Dean Uckar

    (Juraj Dobrila University of Pula, Faculty of Economics and Tourism "Dr. Mijo Mirkovic")

Abstract

Recognizing the macroeconomic determinants that have a statistically significant influence on the formation of house prices is in the interest of the general public due to its informative effect on various interest groups involved in housing construction. Thus, real estate buyers, investors, as well as local government and self-government units should be interested in this information because monitoring of standard macroeconomic variables can provide conclusions about the possible development of residential property prices. Previously conducted research can be classified into four distinctive categories depending on what they take as determining variables: microelements specific to individual micro location, the impact of the COVID-19 pandemic, standard macroeconomic variables, or tourism development. The aim of this study is to analyze the influence of selected macroeconomic variables on residential property prices in Croatia. This study employs Autometrics, i.e. an automatic computer implementation of general-to-specific VAR (vector autoregressive) modelling framework and quarterly data on real GDP, domestic credit, consumer prices, interest rate, tourist arrivals and house prices in the period from March 2005 to September 2022. Performed Granger causality tests and impulse response functions analysis indicate that an increase in real GDP, domestic credit and tourist arrivals increases house prices in Croatia while an increase in consumer prices and interest rate reduces them.

Suggested Citation

  • Manuel Benazic & Dean Uckar, 2024. "The Impact Of Selected Macroeconomic Variables On House Prices In Croatia," Economic Thought and Practice, Department of Economics and Business, University of Dubrovnik, vol. 33(1), pages 65-88, june.
  • Handle: RePEc:avo:emipdu:v:33:y:2024:i:1:p:65-88
    DOI: 10.17818/EMIP/2024/1.4
    as

    Download full text from publisher

    File URL: https://hrcak.srce.hr/clanak/459138
    Download Restriction: no

    File URL: https://libkey.io/10.17818/EMIP/2024/1.4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kevin D. Hoover & Stephen J. Perez, 1999. "Data mining reconsidered: encompassing and the general-to-specific approach to specification search," Econometrics Journal, Royal Economic Society, vol. 2(2), pages 167-191.
    2. Časni Anita Čeh & Filić Josipa, 2022. "Tourism housing price nexus," Croatian Review of Economic, Business and Social Statistics, Sciendo, vol. 8(2), pages 53-65, December.
    3. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    4. Gregory D Sutton, 2002. "Explaining changes in house prices," BIS Quarterly Review, Bank for International Settlements, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sánchez-Fung, José R., 2011. "Estimating monetary policy reaction functions for emerging market economies: The case of Brazil," Economic Modelling, Elsevier, vol. 28(4), pages 1730-1738, July.
    2. Constantinescu, Mihnea & Lastauskas, Povilas, 2018. "The knotty interplay between credit and housing," The Quarterly Review of Economics and Finance, Elsevier, vol. 70(C), pages 241-266.
    3. Leighton Vaughan Williams & J. James Reade, 2016. "Prediction Markets, Social Media and Information Efficiency," Kyklos, Wiley Blackwell, vol. 69(3), pages 518-556, August.
    4. Matteo Mogliani, 2010. "Residual-based tests for cointegration and multiple deterministic structural breaks: A Monte Carlo study," Working Papers halshs-00564897, HAL.
    5. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    6. Growitsch Christian & Nepal Rabindra & Stronzik Marcus, 2015. "Price Convergence and Information Efficiency in German Natural Gas Markets," German Economic Review, De Gruyter, vol. 16(1), pages 87-103, February.
    7. Lee, Chi-Chuan & Lee, Chien-Chiang & Ning, Shao-Lin, 2017. "Dynamic relationship of oil price shocks and country risks," Energy Economics, Elsevier, vol. 66(C), pages 571-581.
    8. Jason Allen & Robert Amano & David P. Byrne & Allan W. Gregory, 2009. "Canadian city housing prices and urban market segmentation," Canadian Journal of Economics, Canadian Economics Association, vol. 42(3), pages 1132-1149, August.
    9. Nautz, Dieter & Strohsal, Till & Netšunajev, Aleksei, 2019. "The Anchoring Of Inflation Expectations In The Short And In The Long Run," Macroeconomic Dynamics, Cambridge University Press, vol. 23(5), pages 1959-1977, July.
    10. Antonia López Villavicencio & Josep Lluís Raymond Bara, 2006. "The short and long-run determinants of the real exchange rate in Mexico," Working Papers wpdea0606, Department of Applied Economics at Universitat Autonoma of Barcelona.
    11. Raphaël Chiappini & Dominique Torre & Elise Tosi, 2019. "Romania's Unsustainable Stabilization: 1929-1933," GREDEG Working Papers 2019-43, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    12. Guili Liao & Qimeng Liu & Rongmao Zhang & Shifang Zhang, 2022. "Rank test of unit‐root hypothesis with AR‐GARCH errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(5), pages 695-719, September.
    13. Saaed, A.A.J., 2007. "Inflation and Economic Growth in Kuwait: 1985-2005. Evidence from Co-Integration and Error Correction Model," Applied Econometrics and International Development, Euro-American Association of Economic Development, vol. 7(1).
    14. Demiralay, Sercan & Ulusoy, Veysel, 2014. "Value-at-risk Predictions of Precious Metals with Long Memory Volatility Models," MPRA Paper 53229, University Library of Munich, Germany.
    15. Zanin, Luca & Marra, Giampiero, 2012. "Assessing the functional relationship between CO2 emissions and economic development using an additive mixed model approach," Economic Modelling, Elsevier, vol. 29(4), pages 1328-1337.
    16. John Barkoulas & Christopher Baum & Mustafa Caglayan, 1999. "Fractional monetary dynamics," Applied Economics, Taylor & Francis Journals, vol. 31(11), pages 1393-1400.
    17. Huang, Shupei & An, Haizhong & Gao, Xiangyun & Sun, Xiaoqi, 2017. "Do oil price asymmetric effects on the stock market persist in multiple time horizons?," Applied Energy, Elsevier, vol. 185(P2), pages 1799-1808.
    18. Bahmani-Oskooee, Mohsen & Bohl, Martin T., 2000. "German monetary unification and the stability of the German M3 money demand function," Economics Letters, Elsevier, vol. 66(2), pages 203-208, February.
    19. Xiaojie Xu, 2017. "The rolling causal structure between the Chinese stock index and futures," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(4), pages 491-509, November.
    20. Kevin S. Nell & Maria M. De Mello, 2019. "The interdependence between the saving rate and technology across regimes: evidence from South Africa," Empirical Economics, Springer, vol. 56(1), pages 269-300, January.

    More about this item

    Keywords

    Autometrics; Croatia; general-to-specific modelling; house prices; VAR model;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • E22 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Investment; Capital; Intangible Capital; Capacity
    • R30 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:avo:emipdu:v:33:y:2024:i:1:p:65-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nebojsa Stojcic (email available below). General contact details of provider: https://edirc.repec.org/data/oedubhr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.