IDEAS home Printed from https://ideas.repec.org/a/arp/ijefrr/2018p72-92.html
   My bibliography  Save this article

Modeling the Volatility and Forecasting the Stock Price of the German Stock Index (DAX30)

Author

Listed:
  • Tristan Nguyen

    (Fresenius University, Munich, Germany)

  • Thi Thanh Mai Bui

    (Berlin School of Economics and Law, Berlin, Germany)

Abstract

To analyze the factors affecting the price volatility of stocks, microeconomic and macroeco-nomic elements must be considered. This paper selects elements that are appropriate with the daily data of stock prices to build the GARCH family models. External variables such as global oil prices, consumer price index, short interest rates and the exchange rate between the United States Dollar and the Euro are examined. The GARCH models are developed in order to analyze and forecast the stock price of the companies in the DAX 30, which is Germany’s most important stock exchange barometer. The volatility of the residual of the mean function is the important key point in the GARCH approach. This financial application can be extend-ed to analyze other specific shares or stock indexes in any stock market in the world. There-fore, it is necessary to understand the operating procedures of their pricing for risk manage-ment, profitability strategies, cost minimization and, in addition, to construct the optimal port-folio depending on investor’s preferences.

Suggested Citation

  • Tristan Nguyen & Thi Thanh Mai Bui, 2018. "Modeling the Volatility and Forecasting the Stock Price of the German Stock Index (DAX30)," International Journal of Economics and Financial Research, Academic Research Publishing Group, vol. 4(4), pages 72-92, 04-2018.
  • Handle: RePEc:arp:ijefrr:2018:p:72-92
    as

    Download full text from publisher

    File URL: https://www.arpgweb.com/pdf-files/ijefr4(4)72-92.pdf
    Download Restriction: no

    File URL: https://www.arpgweb.com/?ic=journal&journal=5&month=04-2018&issue=4&volume=4
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fátima Irina VILLALBA PADILLA & Miguel FLORES-ORTEGA, 2013. "Forecasting the variance and return of Mexican financial series with symmetric GARCH models," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(3(580)), pages 61-82, March.
    2. Matei, Marius, 2009. "Assessing Volatility Forecasting Models: Why GARCH Models Take the Lead," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 42-65, December.
    3. repec:bla:jfinan:v:44:y:1989:i:5:p:1115-53 is not listed on IDEAS
    4. Nasseh, Alireza & Strauss, Jack, 2000. "Stock prices and domestic and international macroeconomic activity: a cointegration approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 40(2), pages 229-245.
    5. repec:agr:journl:v:3(580):y:2013:i:3(580):p:61-82 is not listed on IDEAS
    6. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
    7. Sanjay Sehgal & Radhika Kapur, 2012. "Relationship between Oil Price Shocks and Stock Market Performance: Evidence for Select Global Equity Markets," Vision, , vol. 16(2), pages 81-92, June.
    8. Engle, Robert F. (ed.), 1995. "ARCH: Selected Readings," OUP Catalogue, Oxford University Press, number 9780198774327.
    9. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    10. Blattberg, Robert C & Gonedes, Nicholas J, 1974. "A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices," The Journal of Business, University of Chicago Press, vol. 47(2), pages 244-280, April.
    11. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    12. Robert Engle, 2001. "GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 157-168, Fall.
    13. Brad Baldauf & G. J. Santoni, 1991. "Stock price volatility: Some evidence from an ARCH model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 11(2), pages 191-200, April.
    14. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    15. Granger, Clive W. J., 1992. "Forecasting stock market prices: Lessons for forecasters," International Journal of Forecasting, Elsevier, vol. 8(1), pages 3-13, June.
    16. Phylaktis, Kate & Ravazzolo, Fabiola, 2005. "Stock prices and exchange rate dynamics," Journal of International Money and Finance, Elsevier, vol. 24(7), pages 1031-1053, November.
    17. Fleming, Jeff & Kirby, Chris & Ostdiek, Barbara, 1998. "Information and volatility linkages in the stock, bond, and money markets," Journal of Financial Economics, Elsevier, vol. 49(1), pages 111-137, July.
    18. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    19. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    2. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    3. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Teräsvirta, Timo, 2006. "An introduction to univariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 646, Stockholm School of Economics.
    5. Hassanniakalager, Arman & Baker, Paul L. & Platanakis, Emmanouil, 2024. "A False Discovery Rate approach to optimal volatility forecasting model selection," International Journal of Forecasting, Elsevier, vol. 40(3), pages 881-902.
    6. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
    7. Yu-Hua Zeng & Shou-Lei Wang & Yu-Fei Yang, 2014. "Calibration of the Volatility in Option Pricing Using the Total Variation Regularization," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-9, March.
    8. Turan Bali, 2007. "Modeling the dynamics of interest rate volatility with skewed fat-tailed distributions," Annals of Operations Research, Springer, vol. 151(1), pages 151-178, April.
    9. Carl H. Korkpoe & Peterson Owusu Junior, 2018. "Behaviour of Johannesburg Stock Exchange All Share Index Returns - An Asymmetric GARCH and News Impact Effects Approach," SPOUDAI Journal of Economics and Business, SPOUDAI Journal of Economics and Business, University of Piraeus, vol. 68(1), pages 26-42, January-M.
    10. Mehmet Sahiner, 2022. "Forecasting volatility in Asian financial markets: evidence from recursive and rolling window methods," SN Business & Economics, Springer, vol. 2(10), pages 1-74, October.
    11. Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "High-Frequency and Model-Free Volatility Estimators," Working Papers 2009-13, Faculty of Economic Sciences, University of Warsaw.
    12. Algieri, Bernardina, 2014. "The influence of biofuels, economic and financial factors on daily returns of commodity futures prices," Energy Policy, Elsevier, vol. 69(C), pages 227-247.
    13. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
    14. Cook, Steven, 2006. "The impact of GARCH on asymmetric unit root tests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 745-752.
    15. Issler, João Victor, 1999. "Estimating and forecasting the volatility of Brazilian finance series using arch models (Preliminary Version)," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 347, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    16. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    17. Perry Sadorsky & Michael D. McKenzie, 2008. "Power transformation models and volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(7), pages 587-606.
    18. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, November.
    19. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    20. S. M. Abdullah & Salina Siddiqua & Muhammad Shahadat Hossain Siddiquee & Nazmul Hossain, 2017. "Modeling and forecasting exchange rate volatility in Bangladesh using GARCH models: a comparison based on normal and Student’s t-error distribution," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 3(1), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arp:ijefrr:2018:p:72-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Managing Editor (email available below). General contact details of provider: http://www.arpgweb.com/?ic=journal&journal=5&info=aims .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.