IDEAS home Printed from https://ideas.repec.org/a/anm/alpnmr/v8y2020i2p261-274.html
   My bibliography  Save this article

Determination and Classification of Importance of Attributes Used in Diagnosing Pregnant Women's Birth Method

Author

Listed:
  • Sümeyye Çelik

Abstract

The rapid development of information technologies enables successful results in computer-aided studies. This has led researchers to investigate the usability of technologies such as computer and software supported systems, machine learning, and artificial intelligence in many studies. One of these areas is health. For example, in order not to risk the condition of the mother and baby, in some cases, it is very important to correctly determine the times when the cesarean operation, which is mandatory, is mandatory. In this context, in order to make a faster and more accurate decision, it is very important to determine which attributes and how important the level is in making obligatory cesarean. In this study, to determine whether or not caesarean is necessary in the literature, the importance level of the five criteria taken into consideration has been determined and an attribute determination has been carried out and then a classification has been made. The data set used belongs to 80 pregnant women with 6 attributes. Although the same data set was previously classified with different methods, no study was found on determining the significance levels of the attributes and using artificial neural networks as a method. For this reason, in this study, the feature was determined using an adaptive nerve-fuzzy classifier and classified using artificial neural networks. When the results are examined, it is concluded that the importance levels of the attributes are different. Although the values such as accuracy, Sensitivity, and Specificity calculated to evaluate the classification results were found to be quite high for the training set, it was observed that the desired success was not achieved in the test data. While this result is promising, it also reveals the need to increase the learning performed with larger data sets.

Suggested Citation

  • Sümeyye Çelik, 2020. "Determination and Classification of Importance of Attributes Used in Diagnosing Pregnant Women's Birth Method," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 8(2), pages 261-274, December.
  • Handle: RePEc:anm:alpnmr:v:8:y:2020:i:2:p:261-274
    DOI: http://dx.doi.org/10.17093/alphanumeric.757769
    as

    Download full text from publisher

    File URL: https://www.alphanumericjournal.com/media/Issue/volume-8-issue-2-2020/determination-and-classification-of-importance-of-attributes_jH6ERDy.pdf
    Download Restriction: no

    File URL: https://alphanumericjournal.com/article/determination-and-classification-of-importance-of-attributes-used-in-diagnosing-pregnant-womens-birth-method
    Download Restriction: no

    File URL: https://libkey.io/http://dx.doi.org/10.17093/alphanumeric.757769?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hill, Tim & Marquez, Leorey & O'Connor, Marcus & Remus, William, 1994. "Artificial neural network models for forecasting and decision making," International Journal of Forecasting, Elsevier, vol. 10(1), pages 5-15, June.
    2. El-Bouri, Ahmed & Balakrishnan, Subramaniam & Popplewell, Neil, 2000. "Sequencing jobs on a single machine: A neural network approach," European Journal of Operational Research, Elsevier, vol. 126(3), pages 474-490, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sümeyye Çelik & Melike Şişeci Çeşmeli & İhsan Pençe & Özlem Çetinkaya Bozkurt, 2022. "Classification of Autism Spectrum Disorder for Adolescents Using Artificial Neural Networks," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 10(1), pages 15-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prybutok, Victor R. & Yi, Junsub & Mitchell, David, 2000. "Comparison of neural network models with ARIMA and regression models for prediction of Houston's daily maximum ozone concentrations," European Journal of Operational Research, Elsevier, vol. 122(1), pages 31-40, April.
    2. C, Deep Prakash & Majumdar, Adrija, 2023. "Predicting sports fans’ engagement with culturally aligned social media content: A language expectancy perspective," Journal of Retailing and Consumer Services, Elsevier, vol. 75(C).
    3. Leung, Philip C.M. & Lee, Eric W.M., 2013. "Estimation of electrical power consumption in subway station design by intelligent approach," Applied Energy, Elsevier, vol. 101(C), pages 634-643.
    4. Chatfield, Chris, 1995. "Positive or negative?," International Journal of Forecasting, Elsevier, vol. 11(4), pages 501-502, December.
    5. Oscar Claveria & Salvador Torra, 2013. "“Forecasting Business surveys indicators: neural networks vs. time series models”," AQR Working Papers 201312, University of Barcelona, Regional Quantitative Analysis Group, revised Nov 2013.
    6. Thomassey, Sebastien & Happiette, Michel & Castelain, Jean Marie, 2005. "A short and mean-term automatic forecasting system--application to textile logistics," European Journal of Operational Research, Elsevier, vol. 161(1), pages 275-284, February.
    7. Arshia Amiri & Ulf-G Gerdtham, 2012. "Granger Causality Between Exports, Imports and GDP in France: Evidance from Using Geostatistical Models," Economic Research Guardian, Weissberg Publishing, vol. 2(1), pages 43-59, May.
    8. Geraint Johnes, 2000. "Up Around the Bend: Linear and nonlinear models of the UK economy compared," International Review of Applied Economics, Taylor & Francis Journals, vol. 14(4), pages 485-493.
    9. Callen, Jeffrey L. & Kwan, Clarence C. Y. & Yip, Patrick C. Y. & Yuan, Yufei, 1996. "Neural network forecasting of quarterly accounting earnings," International Journal of Forecasting, Elsevier, vol. 12(4), pages 475-482, December.
    10. de Lucio, Juan, 2021. "Estimación adelantada del crecimiento regional mediante redes neuronales LSTM," INVESTIGACIONES REGIONALES - Journal of REGIONAL RESEARCH, Asociación Española de Ciencia Regional, issue 49, pages 45-64.
    11. Mioara CHIRITA & Daniela SARPE, 2011. "Usefulness of Artificial Neural Networks for Predicting Financial and Economic Crisis," Risk in Contemporary Economy, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, pages 44-48.
    12. Daniel Santin, 2008. "On the approximation of production functions: a comparison of artificial neural networks frontiers and efficiency techniques," Applied Economics Letters, Taylor & Francis Journals, vol. 15(8), pages 597-600.
    13. Pei En Lee, 2019. "The Empirical Study of Investor Sentiment on Stock Return Prediction," International Journal of Economics and Financial Issues, Econjournals, vol. 9(2), pages 119-124.
    14. Lolli, F. & Gamberini, R. & Regattieri, A. & Balugani, E. & Gatos, T. & Gucci, S., 2017. "Single-hidden layer neural networks for forecasting intermittent demand," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 116-128.
    15. C. Orsenigo & C. Vercellis, 2018. "Anthropogenic influence on global warming for effective cost-benefit analysis: a machine learning perspective," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 45(3), pages 425-442, September.
    16. Sümeyye Çelik & Melike Şişeci Çeşmeli & İhsan Pençe & Özlem Çetinkaya Bozkurt, 2022. "Classification of Autism Spectrum Disorder for Adolescents Using Artificial Neural Networks," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 10(1), pages 15-24, June.
    17. Icen Yoosefdoost & Abbas Khashei-Siuki & Hossein Tabari & Omolbani Mohammadrezapour, 2022. "Runoff Simulation Under Future Climate Change Conditions: Performance Comparison of Data-Mining Algorithms and Conceptual Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1191-1215, March.
    18. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    19. Oscar Claveria & Enric Monte & Salvador Torra, 2015. "“Self-organizing map analysis of agents’ expectations. Different patterns of anticipation of the 2008 financial crisis”," AQR Working Papers 201508, University of Barcelona, Regional Quantitative Analysis Group, revised Mar 2015.
    20. Petroni, Alberto & Rizzi, Antonio, 2002. "A fuzzy logic based methodology to rank shop floor dispatching rules," International Journal of Production Economics, Elsevier, vol. 76(1), pages 99-108, March.

    More about this item

    Keywords

    Adaptive Neuro-Fuzzy Classifier; Artificial Neural Networks; Attribute Selection; Caesarean; Classification;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:anm:alpnmr:v:8:y:2020:i:2:p:261-274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bahadir Fatih Yildirim (email available below). General contact details of provider: https://www.alphanumericjournal.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.