IDEAS home Printed from https://ideas.repec.org/a/aif/journl/v28y2023i1p31-40.html
   My bibliography  Save this article

Web-based Bus Tracking System in the Internet of Things IoT

Author

Listed:
  • Zina Balani

    (Department of Software Engineering, Lebanese French University, Erbil, Iraq.)

  • Mohammed Nasseh Mohammed

    (Department of Software and Informatics, college of Engineering, Salahaddin University, Erbil, Iraq.)

Abstract

Public transportation has become integral to daily life, as individuals rely on it to commute between their homes, workplaces, and colleges. However, unnecessary waiting times during transport often result in time wastage. Students frequently find themselves in lines, longing to know the whereabouts of buses and their estimated arrival times at the bus stop. To address these issues, this study presents the development of a web-based system that highlights the routes taken by each bus during its journey. Integrated with Google Maps, the system enables students to conveniently access the routes and schedules of buses. The system provides users with information, including real-time updates on the bus's live location, displayed on the map interface. The system offers additional details about the bus driver, such as their names, phone numbers, bus numbers, and start and end times of their shifts. Users can access this information from anywhere, whether they are at home, work, or college, utilizing the web-based application and an internet connection. Also, a QR code scanning feature is available at bus stops, allowing people to quickly access the desired information. By implementing this system, users, particularly students, gain enhanced visibility into bus routes and schedules, enabling better planning and minimizing waiting times. The web-based platform offers convenience and accessibility, empowering users to make informed decisions about their journeys. The integration of live bus tracking, driver information, and QR code scanning improves the overall user experience and provides a comprehensive solution for public transportation users.

Suggested Citation

  • Zina Balani & Mohammed Nasseh Mohammed, 2023. "Web-based Bus Tracking System in the Internet of Things IoT," International Journal of Science and Business, IJSAB International, vol. 28(1), pages 31-40.
  • Handle: RePEc:aif:journl:v:28:y:2023:i:1:p:31-40
    as

    Download full text from publisher

    File URL: https://ijsab.com/wp-content/uploads/2203.pdf
    Download Restriction: no

    File URL: https://ijsab.com/volume-28-issue-1/6088
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrew Whitmore & Anurag Agarwal & Li Xu, 2015. "The Internet of Things—A survey of topics and trends," Information Systems Frontiers, Springer, vol. 17(2), pages 261-274, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arfi, Wissal Ben & Nasr, Imed Ben & Kondrateva, Galina & Hikkerova, Lubica, 2021. "The role of trust in intention to use the IoT in eHealth: Application of the modified UTAUT in a consumer context," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    2. Hong Jiang & Shuyu Sun & Hongtao Xu & Shukuan Zhao & Yong Chen, 2020. "Enterprises' network structure and their technology standardization capability in Industry 4.0," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(4), pages 749-765, July.
    3. Chae, Bongsug (Kevin), 2018. "The Internet of Things (IoT): A Survey of Topics and Trends using Twitter Data and Topic Modeling," 22nd ITS Biennial Conference, Seoul 2018. Beyond the boundaries: Challenges for business, policy and society 190376, International Telecommunications Society (ITS).
    4. Qinghua Zheng & Chutong Yang & Haijun Yang & Jianhe Zhou, 2020. "A Fast Exact Algorithm for Deployment of Sensor Nodes for Internet of Things," Information Systems Frontiers, Springer, vol. 22(4), pages 829-842, August.
    5. Filiou, Despoina & Kesidou, Effie & Wu, Lichao, 2023. "Are smart cities green? The role of environmental and digital policies for Eco-innovation in China," World Development, Elsevier, vol. 165(C).
    6. Damminda Alahakoon & Rashmika Nawaratne & Yan Xu & Daswin Silva & Uthayasankar Sivarajah & Bhumika Gupta, 2023. "Self-Building Artificial Intelligence and Machine Learning to Empower Big Data Analytics in Smart Cities," Information Systems Frontiers, Springer, vol. 25(1), pages 221-240, February.
    7. Vasja Roblek & Maja Meško & Alojz Krapež, 2016. "A Complex View of Industry 4.0," SAGE Open, , vol. 6(2), pages 21582440166, June.
    8. Peter M. Bednar & Christine Welch, 0. "Socio-Technical Perspectives on Smart Working: Creating Meaningful and Sustainable Systems," Information Systems Frontiers, Springer, vol. 0, pages 1-18.
    9. Ardito, Lorenzo & D'Adda, Diego & Messeni Petruzzelli, Antonio, 2018. "Mapping innovation dynamics in the Internet of Things domain: Evidence from patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 317-330.
    10. Yao, Meifang & Di, He & Zheng, Xianrong & Xu, Xiaobo, 2018. "Impact of payment technology innovations on the traditional financial industry: A focus on China," Technological Forecasting and Social Change, Elsevier, vol. 135(C), pages 199-207.
    11. Payam Hanafizadeh & Parastou Hatami & Morteza Analoui & Amir Albadvi, 2021. "Business model innovation driven by the internet of things technology, in internet service providers’ business context," Information Systems and e-Business Management, Springer, vol. 19(4), pages 1175-1243, December.
    12. Qinglan Liu & Adriana Hofmann Trevisan & Miying Yang & Janaina Mascarenhas, 2022. "A framework of digital technologies for the circular economy: Digital functions and mechanisms," Business Strategy and the Environment, Wiley Blackwell, vol. 31(5), pages 2171-2192, July.
    13. Eryarsoy, Enes & Kilic, Huseyin Selcuk & Zaim, Selim & Doszhanova, Marzhan, 2022. "Assessing IoT challenges in supply chain: A comparative study before and during- COVID-19 using interval valued neutrosophic analytical hierarchy process," Journal of Business Research, Elsevier, vol. 147(C), pages 108-123.
    14. Federica Cena & Luca Console & Assunta Matassa & Ilaria Torre, 2019. "Multi-dimensional intelligence in smart physical objects," Information Systems Frontiers, Springer, vol. 21(2), pages 383-404, April.
    15. Oscar Brousse & Charles H. Simpson & Ate Poorthuis & Clare Heaviside, 2024. "Unequal distributions of crowdsourced weather data in England and Wales," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Pan Wang & Ricardo Valerdi & Shangming Zhou & Ling Li, 2015. "Introduction: Advances in IoT research and applications," Information Systems Frontiers, Springer, vol. 17(2), pages 239-241, April.
    17. Rui Xu & Changqing Wu & Shengying Zhu & Baodong Fang & Wei Wang & Lida Xu & Wu He, 2017. "A rapid maneuver path planning method with complex sensor pointing constraints in the attitude space," Information Systems Frontiers, Springer, vol. 19(4), pages 945-953, August.
    18. Payam Hanafizadeh & Ferdos Hatami Lankarani & Shahrokh Nikou, 2022. "Perspectives on management theory’s application in the internet of things research," Information Systems and e-Business Management, Springer, vol. 20(4), pages 749-787, December.
    19. Shang, Juan & Li, Pengfei & Li, Ling & Chen, Yong, 2018. "The relationship between population growth and capital allocation in urbanization," Technological Forecasting and Social Change, Elsevier, vol. 135(C), pages 249-256.
    20. Jens Passlick & Sonja Dreyer & Daniel Olivotti & Lukas Grützner & Dennis Eilers & Michael H. Breitner, 2021. "Predictive maintenance as an internet of things enabled business model: A taxonomy," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(1), pages 67-87, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aif:journl:v:28:y:2023:i:1:p:31-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Farjana Rahman (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.