IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v19y2017i4d10.1007_s10796-016-9642-1.html
   My bibliography  Save this article

A rapid maneuver path planning method with complex sensor pointing constraints in the attitude space

Author

Listed:
  • Rui Xu

    (Beijing Institute of Technology)

  • Changqing Wu

    (Beijing Institute of Technology)

  • Shengying Zhu

    (Beijing Institute of Technology)

  • Baodong Fang

    (Shanghai Institute of Satellite Engineering)

  • Wei Wang

    (Shanghai Institute of Satellite Engineering)

  • Lida Xu

    (Shanghai Jiao Tong University
    Old Dominion University)

  • Wu He

    (Old Dominion University)

Abstract

Large-scale and high-resolution perception is easy to achieve for the physical world, if satellite technology was used in Internet of Things (IoT) in the future. Remote sensing satellite is superior to original method for ground target detection and environmental perception, which could be completed through onboard perception sensors. In the process of detection and perception, satellite needs to frequently perform attitude maneuver in order to meet a variety of task requirements. We have to face with multi-object, multi-sensors constrained maneuver problem. Not only the kinematic and dynamics constraints should been taken into account, but the engineering bounded constraints need to be considered. Moreover, sensor pointing constraints should be elaborated and analyzed reasonably. It is increasingly important how to achieve attitude maneuver in these complex constraints safely and rapidly. Firstly, sensor pointing constraints are translated to quadratic form in order to simplify the representation and computation in the attitude quaternion space. Secondly, we propose an improved RRT planning algorithm for spacecraft, which is able to address a variety of sensor pointing constraints. This algorithm will be used as a global planner, in which the uniformly distributed nodes in the expansion space are randomly sampled and the expanded nodes are screened out based on the comparative evaluation function. Finally, simulation results validate the advantages of the proposed algorithm.

Suggested Citation

  • Rui Xu & Changqing Wu & Shengying Zhu & Baodong Fang & Wei Wang & Lida Xu & Wu He, 2017. "A rapid maneuver path planning method with complex sensor pointing constraints in the attitude space," Information Systems Frontiers, Springer, vol. 19(4), pages 945-953, August.
  • Handle: RePEc:spr:infosf:v:19:y:2017:i:4:d:10.1007_s10796-016-9642-1
    DOI: 10.1007/s10796-016-9642-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-016-9642-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-016-9642-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew Whitmore & Anurag Agarwal & Li Xu, 2015. "The Internet of Things—A survey of topics and trends," Information Systems Frontiers, Springer, vol. 17(2), pages 261-274, April.
    2. Shifeng Fang & Lida Xu & Yunqiang Zhu & Yongqiang Liu & Zhihui Liu & Huan Pei & Jianwu Yan & Huifang Zhang, 2015. "An integrated information system for snowmelt flood early-warning based on internet of things," Information Systems Frontiers, Springer, vol. 17(2), pages 321-335, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qinghua Zheng & Chutong Yang & Haijun Yang & Jianhe Zhou, 2020. "A Fast Exact Algorithm for Deployment of Sensor Nodes for Internet of Things," Information Systems Frontiers, Springer, vol. 22(4), pages 829-842, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan Wang & Ricardo Valerdi & Shangming Zhou & Ling Li, 2015. "Introduction: Advances in IoT research and applications," Information Systems Frontiers, Springer, vol. 17(2), pages 239-241, April.
    2. Shan, Siqing & Jia, Yingwei & Zheng, Xianrong & Xu, Xiaobo, 2018. "Assessing relationship and contribution of China's technological entrepreneurship to socio-economic development," Technological Forecasting and Social Change, Elsevier, vol. 135(C), pages 83-90.
    3. Xiongnan Jin & Sejin Chun & Jooik Jung & Kyong-Ho Lee, 0. "A fast and scalable approach for IoT service selection based on a physical service model," Information Systems Frontiers, Springer, vol. 0, pages 1-16.
    4. Arfi, Wissal Ben & Nasr, Imed Ben & Kondrateva, Galina & Hikkerova, Lubica, 2021. "The role of trust in intention to use the IoT in eHealth: Application of the modified UTAUT in a consumer context," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    5. Hong Jiang & Shuyu Sun & Hongtao Xu & Shukuan Zhao & Yong Chen, 2020. "Enterprises' network structure and their technology standardization capability in Industry 4.0," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(4), pages 749-765, July.
    6. Chae, Bongsug (Kevin), 2018. "The Internet of Things (IoT): A Survey of Topics and Trends using Twitter Data and Topic Modeling," 22nd ITS Biennial Conference, Seoul 2018. Beyond the boundaries: Challenges for business, policy and society 190376, International Telecommunications Society (ITS).
    7. Qinghua Zheng & Chutong Yang & Haijun Yang & Jianhe Zhou, 2020. "A Fast Exact Algorithm for Deployment of Sensor Nodes for Internet of Things," Information Systems Frontiers, Springer, vol. 22(4), pages 829-842, August.
    8. Filiou, Despoina & Kesidou, Effie & Wu, Lichao, 2023. "Are smart cities green? The role of environmental and digital policies for Eco-innovation in China," World Development, Elsevier, vol. 165(C).
    9. Damminda Alahakoon & Rashmika Nawaratne & Yan Xu & Daswin Silva & Uthayasankar Sivarajah & Bhumika Gupta, 2023. "Self-Building Artificial Intelligence and Machine Learning to Empower Big Data Analytics in Smart Cities," Information Systems Frontiers, Springer, vol. 25(1), pages 221-240, February.
    10. Shivam Gupta & Vinayak A. Drave & Surajit Bag & Zongwei Luo, 2019. "Leveraging Smart Supply Chain and Information System Agility for Supply Chain Flexibility," Information Systems Frontiers, Springer, vol. 21(3), pages 547-564, June.
    11. Vasja Roblek & Maja Meško & Alojz Krapež, 2016. "A Complex View of Industry 4.0," SAGE Open, , vol. 6(2), pages 21582440166, June.
    12. Peter M. Bednar & Christine Welch, 0. "Socio-Technical Perspectives on Smart Working: Creating Meaningful and Sustainable Systems," Information Systems Frontiers, Springer, vol. 0, pages 1-18.
    13. Ardito, Lorenzo & D'Adda, Diego & Messeni Petruzzelli, Antonio, 2018. "Mapping innovation dynamics in the Internet of Things domain: Evidence from patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 317-330.
    14. Ashish Gupta & Amit Deokar & Lakshmi Iyer & Ramesh Sharda & Dave Schrader, 2018. "Big Data & Analytics for Societal Impact: Recent Research and Trends," Information Systems Frontiers, Springer, vol. 20(2), pages 185-194, April.
    15. Siqing Shan & Xin Wen & Yigang Wei & Zijin Wang & Yong Chen, 2020. "Intelligent manufacturing in industry 4.0: A case study of Sany heavy industry," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(4), pages 679-690, July.
    16. Yao, Meifang & Di, He & Zheng, Xianrong & Xu, Xiaobo, 2018. "Impact of payment technology innovations on the traditional financial industry: A focus on China," Technological Forecasting and Social Change, Elsevier, vol. 135(C), pages 199-207.
    17. Payam Hanafizadeh & Parastou Hatami & Morteza Analoui & Amir Albadvi, 2021. "Business model innovation driven by the internet of things technology, in internet service providers’ business context," Information Systems and e-Business Management, Springer, vol. 19(4), pages 1175-1243, December.
    18. Qinglan Liu & Adriana Hofmann Trevisan & Miying Yang & Janaina Mascarenhas, 2022. "A framework of digital technologies for the circular economy: Digital functions and mechanisms," Business Strategy and the Environment, Wiley Blackwell, vol. 31(5), pages 2171-2192, July.
    19. Eryarsoy, Enes & Kilic, Huseyin Selcuk & Zaim, Selim & Doszhanova, Marzhan, 2022. "Assessing IoT challenges in supply chain: A comparative study before and during- COVID-19 using interval valued neutrosophic analytical hierarchy process," Journal of Business Research, Elsevier, vol. 147(C), pages 108-123.
    20. Federica Cena & Luca Console & Assunta Matassa & Ilaria Torre, 2019. "Multi-dimensional intelligence in smart physical objects," Information Systems Frontiers, Springer, vol. 21(2), pages 383-404, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:19:y:2017:i:4:d:10.1007_s10796-016-9642-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.