IDEAS home Printed from https://ideas.repec.org/a/ags/stagec/246259.html
   My bibliography  Save this article

Modelling climate effects on Hungarian winter wheat and maize yields

Author

Listed:
  • Fogarasi, József
  • Kemény, Gábor
  • Molnár, András
  • Keményné Horváth, Zsuzsanna
  • Zubor-Nemes, Anna
  • Kiss, Andrea

Abstract

Hungarian cereal production is situated in the zone of Europe which is most vulnerable to the effects of changes in climatic conditions. The objectives of this paper are to present the calibration and validation of the 4M crop simulation model using farm-level observed representative values, and to estimate the potential yields of winter wheat and maize production for the next three decades. Analysing the differences between the estimated and observed yields, we identified as key influencing factors the heterogeneity of technologies and of land quality. A trend of slightly decreasing yields is projected for the next three decades for both cereals. The precise impact of environmental change on crop yields will depend on which climate scenario occurs.

Suggested Citation

  • Fogarasi, József & Kemény, Gábor & Molnár, András & Keményné Horváth, Zsuzsanna & Zubor-Nemes, Anna & Kiss, Andrea, 2016. "Modelling climate effects on Hungarian winter wheat and maize yields," Studies in Agricultural Economics, Research Institute for Agricultural Economics, vol. 118(2), pages 1-6, August.
  • Handle: RePEc:ags:stagec:246259
    DOI: 10.22004/ag.econ.246259
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/246259/files/1614-fogarasi_v2.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.246259?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert Mendelsohn & Ariel Dinar, 2009. "Climate Change and Agriculture," Books, Edward Elgar Publishing, number 12990.
    2. Jonathan Kaminski & Iddo Kan & Aliza Fleischer, 2013. "A Structural Land-Use Analysis of Agricultural Adaptation to Climate Change: A Proactive Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(1), pages 70-93.
    3. van der Werf, Edwin, 2008. "Production functions for climate policy modeling: An empirical analysis," Energy Economics, Elsevier, vol. 30(6), pages 2964-2979, November.
    4. Nigel Key & Stacy Sneeringer, 2014. "Potential Effects of Climate Change on the Productivity of U.S. Dairies," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(4), pages 1136-1156.
    5. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Shuai & Chen, Xiaoguang & Xu, Jintao, 2013. "Impacts of Climate Change on Corn and Soybean Yields in China," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149739, Agricultural and Applied Economics Association.
    2. Ji, Xinde & Cobourn, Kelly M. & Weng, Weizhe, 2018. "The Effect of Climate Change on Irrigated Agriculture: Water-Temperature Interactions and Adaptation in the Western U.S," 2018 Annual Meeting, August 5-7, Washington, D.C. 274306, Agricultural and Applied Economics Association.
    3. Fabri, Charlotte & Moretti, Michele & Passel, Steven Van, 2021. "On the (Ir)relevance of Heatwaves in Climate Change Impacts on European Agriculture," 2021 Conference, August 17-31, 2021, Virtual 314966, International Association of Agricultural Economists.
    4. Tanimonure, Victoria Adeyemi, 2021. "Impact of Climate Adaptation Strategies on the Net Farm Revenue of Underutilized Indigenous Vegetables’ (UIVs) Production in Southwest Nigeria," 2021 Conference, August 17-31, 2021, Virtual 315903, International Association of Agricultural Economists.
    5. Eric Njuki & Boris E Bravo-Ureta & Víctor E Cabrera, 2020. "Climatic effects and total factor productivity: econometric evidence for Wisconsin dairy farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(3), pages 1276-1301.
    6. Desmet, Klaus & Rossi-Hansberg, Esteban, 2015. "On the spatial economic impact of global warming," Journal of Urban Economics, Elsevier, vol. 88(C), pages 16-37.
    7. Cook, Aaron M. & Ricker-Gilbert, Jacob E. & Sesmero, Juan P., 2013. "How do African households adapt to climate change? Evidence from Malawi," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150507, Agricultural and Applied Economics Association.
    8. Eric Njuki & Boris E Bravo-Ureta & Christopher J O’Donnell, 2018. "A new look at the decomposition of agricultural productivity growth incorporating weather effects," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-21, February.
    9. Shiell, Leslie & Lyssenko, Nikita, 2014. "Climate policy and induced R&D: How great is the effect?," Energy Economics, Elsevier, vol. 46(C), pages 279-294.
    10. Ayala Wineman & Thomas S Jayne, 2018. "Land Prices Heading Skyward? An Analysis of Farmland Values across Tanzania," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 40(2), pages 187-214.
    11. Alemu Mekonnen, 2014. "Economic Costs of Climate Change and Climate Finance with a Focus on Africa," Journal of African Economies, Centre for the Study of African Economies, vol. 23(suppl_2), pages 50-82.
    12. Carlo Fezzi & Ian Bateman, 2015. "The Impact of Climate Change on Agriculture: Nonlinear Effects and Aggregation Bias in Ricardian Models of Farmland Values," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 57-92.
    13. Marcos A. Lana & Ana Carolina F. Vasconcelos & Christoph Gornott & Angela Schaffert & Michelle Bonatti & Johanna Volk & Frieder Graef & Kurt Christian Kersebaum & Stefan Sieber, 2018. "Is dry soil planting an adaptation strategy for maize cultivation in semi-arid Tanzania?," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(4), pages 897-910, August.
    14. Gebreegziabher, Zenebe & Mekonnen, Alemu & Deribe, Rahel & Abera, Samuel & Kassahun, Meseret Molla, 2013. "Crop-Livestock Inter-linkages and Climate Change Implications for Ethiopia’s Agriculture: A Ricardian Approach," RFF Working Paper Series dp-13-14-efd, Resources for the Future.
    15. Xiaoxia Shi & Haiyun Liu & Joshua Sunday Riti, 2019. "The role of energy mix and financial development in greenhouse gas (GHG) emissions’ reduction: evidence from ten leading CO2 emitting countries," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(3), pages 695-729, October.
    16. Steven Passel & Emanuele Massetti & Robert Mendelsohn, 2017. "A Ricardian Analysis of the Impact of Climate Change on European Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 725-760, August.
    17. Jonathan E. Ogbuabor & Emmanuel I. Egwuchukwu, 2017. "The Impact of Climate Change on the Nigerian Economy," International Journal of Energy Economics and Policy, Econjournals, vol. 7(2), pages 217-223.
    18. Stephie Fried & Kevin Novan & William Peterman, 2018. "The Distributional Effects of a Carbon Tax on Current and Future Generations," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 30, pages 30-46, October.
    19. Brockhaus, Jan & Huang, Jikun & Hu, Jiliang & Kalkuhl, Matthias & von Braun, Joachim & Yang, Guolei, 2015. "Rice, wheat, and corn supply response in China," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205988, Agricultural and Applied Economics Association.
    20. Oluwatoyin Matthew & Romanus Osabohien & Fasina Fagbeminiyi & Afolake Fasina, 2018. "Greenhouse Gas Emissions and Health Outcomes in Nigeria: Empirical Insight from Auto-regressive Distribution Lag Technique," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 43-50.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:stagec:246259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/akiiihu.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.