IDEAS home Printed from https://ideas.repec.org/a/ags/roaaec/310316.html
   My bibliography  Save this article

Spatiotemporal Evaluation Of Dry Beans And Groundnut Production Technology And Inefficiency In Ghana

Author

Listed:
  • TSIBOE, Francis
  • ASEETE, Paul
  • DJOKOTO, Justice G.

Abstract

Research background: A combination of technology and efficiency gains will drive future intensification programs aimed at fostering food and nutrition security in the developing world. Specifically, the adoption of improved varieties and use of quality seed alongside good agronomic practices will be critical. Purpose of the article: Given the space-time availability of technology, this study investigates how production efficiency (technical efficiency, technology gap, and meta technical efficiency) has changed over time and assesses the possibility of heterogeneous technology adoption in Ghana. Methods: The study constructs a rich nationally representative dataset of dry beans and groundnut farmers that constitutes 15 production seasons in Ghana. Using a sample of 10,518 farmers from 10,051 households, a Meta Stochastic Frontier (MSF) approach is used to access changes and determinants efficiency and technology adoption. Findings & Value added: We find that farms are operating under heterogeneous technologies along ecological lines and that the technology gap has been reducing over time. Improvements in meta technical efficiency could be driven by the gains in the technology gap ratio. Technical efficiency levels across the two legumes averaged about 61% and did not significantly improve between 1987 to 2017. The key determinants for the observed trends were farmer education, mechanization, access to agricultural extension services, and land ownership. Holding ecological technologies constant, legume farmers generally performed poorly because of technical inefficiency, implying that a general improvement in farmer managerial skills could substantially improve farm output. The study recommends policies/programs be formulated on a case-by-case basis; to ensure specificity and wider impacts, if production is to improve.

Suggested Citation

  • TSIBOE, Francis & ASEETE, Paul & DJOKOTO, Justice G., 2021. "Spatiotemporal Evaluation Of Dry Beans And Groundnut Production Technology And Inefficiency In Ghana," Review of Agricultural and Applied Economics (RAAE), Faculty of Economics and Management, Slovak Agricultural University in Nitra, vol. 24(1), March.
  • Handle: RePEc:ags:roaaec:310316
    DOI: 10.22004/ag.econ.310316
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/310316/files/RAAE_1_2021_Tsiboe_et_al.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.310316?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. DJOKOTO, Justice G. & OWUSU, Victor & AWUNYO-VITOR, Dadson, 2017. "Technical Efficiency In Organic And Conventional Agriculture - A Gender Comparison," Review of Agricultural and Applied Economics (RAAE), Faculty of Economics and Management, Slovak Agricultural University in Nitra, vol. 20(2), November.
    2. Schmidt, Peter & Lin, Tsai-Fen, 1984. "Simple tests of alternative specifications in stochastic frontier models," Journal of Econometrics, Elsevier, vol. 24(3), pages 349-361, March.
    3. Federico Belotti & Silvio Daidone & Giuseppe Ilardi & Vincenzo Atella, 2013. "Stochastic frontier analysis using Stata," Stata Journal, StataCorp LP, vol. 13(4), pages 718-758, December.
    4. OWUSU, Victor, 2016. "Technical Efficiency Of Technology Adoption By Maize Farmers In Three Agro-Ecological Zones Of Ghana," Review of Agricultural and Applied Economics (RAAE), Faculty of Economics and Management, Slovak Agricultural University in Nitra, vol. 19(2), pages 1-12, October.
    5. Nishimizu, Mieko & Page, John M, Jr, 1982. "Total Factor Productivity Growth, Technological Progress and Technical Efficiency Change: Dimensions of Productivity Change in Yugoslavia, 1965-78," Economic Journal, Royal Economic Society, vol. 92(368), pages 920-936, December.
    6. Cliff Huang & Tai-Hsin Huang & Nan-Hung Liu, 2014. "A new approach to estimating the metafrontier production function based on a stochastic frontier framework," Journal of Productivity Analysis, Springer, vol. 42(3), pages 241-254, December.
    7. Just, Richard E. & Pope, Rulon D., 1978. "Stochastic specification of production functions and economic implications," Journal of Econometrics, Elsevier, vol. 7(1), pages 67-86, February.
    8. Binswanger-Mkhize, Hans P. & Savastano, Sara, 2017. "Agricultural intensification: The status in six African countries," Food Policy, Elsevier, vol. 67(C), pages 26-40.
    9. Tsiboe, Francis & Asravor, Jacob & Osei, Evelyn, 2019. "Vegetable production technical efficiency and technology gaps in Ghana," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 14(4), December.
    10. Richard E. Just & Rulon D. Pope, 1979. "Production Function Estimation and Related Risk Considerations," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 61(2), pages 276-284.
    11. Jacob Asravor & Alexander N. Wiredu & Khalid Siddig & Edward E. Onumah, 2019. "Evaluating the Environmental-Technology Gaps of Rice Farms in Distinct Agro-Ecological Zones of Ghana," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
    12. Etwire, Prince Maxwell & Martey, Edward & Dogbe, Wilson, 2013. "Technical Efficiency of Soybean Farms and Its Determinants in Saboba and Chereponi Districts of Northern Ghana: A Stochastic Frontier Approach," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 2(4).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacob Asravor & Francis Tsiboe & Richard K. Asravor & Alexander N. Wiredu & Manfred Zeller, 2024. "Technology and managerial performance of farm operators by age in Ghana," Journal of Productivity Analysis, Springer, vol. 61(3), pages 279-303, June.
    2. Hasibuan, Abdul Muis & Gregg, Daniel & Stringer, Randy, 2022. "Risk preferences, intra-household dynamics and spatial effects on chemical inputs use: Case of small-scale citrus farmers in Indonesia," Land Use Policy, Elsevier, vol. 122(C).
    3. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    4. Asravor, Jacob & Wiredu, Alexander Nimo & Zeller, Manfred, 2024. "Does integrating improved seeds with agronomic practices enhance farm performance? Evidence from rural Mozambique," 2024 Annual Meeting, July 28-30, New Orleans, LA 344063, Agricultural and Applied Economics Association.
    5. Gatti, Nicolas & Cecil, Michael & Baylis, Kathy & Estes, Lyndon & Blekking, Jordan & Heckelei, Thomas & Vergopolan, Noemi & Evans, Tom, 2023. "Is closing the agricultural yield gap a “risky” endeavor?," Agricultural Systems, Elsevier, vol. 208(C).
    6. Nathan D. DeLay & Nathanael M. Thompson & James R. Mintert, 2022. "Precision agriculture technology adoption and technical efficiency," Journal of Agricultural Economics, Wiley Blackwell, vol. 73(1), pages 195-219, February.
    7. Samira Shayanmehr & Shida Rastegari Henneberry & Mahmood Sabouhi Sabouni & Naser Shahnoushi Foroushani, 2020. "Climate Change and Sustainability of Crop Yield in Dry Regions Food Insecurity," Sustainability, MDPI, vol. 12(23), pages 1-24, November.
    8. Rocha, Jr., Adauto B. & Fulginiti, Lilyan E. & Perrin, Richard K. & Walters, Cory G., 2022. "What is the value of crop insurance for Nebraskan farmers?," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322529, Agricultural and Applied Economics Association.
    9. Zeytoon Nejad Moosavian, Seyyed Ali & Goodwin, Barry K., 2018. "GENERALIZING THE GENERAL: Generalizing the CES Production Function to Allow for the Flexibility of Input-Driven Output Risk and Viability of Input Thresholds," 2018 Annual Meeting, August 5-7, Washington, D.C. 274352, Agricultural and Applied Economics Association.
    10. Mitchell, Paul David, 1999. "The theory and practice of green insurance: insurance to encourage the adoption of corn rootworm IPM," ISU General Staff Papers 1999010108000013154, Iowa State University, Department of Economics.
    11. Ali D. Cagdas & Scott R. Jeffrey & Elwin G. Smith & Peter C. Boxall, 2016. "Environmental Stewardship and Technical Efficiency in Canadian Prairie Canola Production," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 64(3), pages 455-477, September.
    12. Peter E. Rossi, 1984. "Stochastic Specification of Cost and Production Relationships," Discussion Papers 616, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    13. Jutta Roosen & David A. Hennessy, 2003. "Tests for the Role of Risk Aversion on Input Use," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(1), pages 30-43.
    14. Finger, Robert & Buchmann, Nina, 2015. "An ecological economic assessment of risk-reducing effects of species diversity in managed grasslands," Ecological Economics, Elsevier, vol. 110(C), pages 89-97.
    15. Ashok K. Mishra & Mike G. Tsionas, 2020. "A Minimax Regret Approach to Decision Making Under Uncertainty," Journal of Agricultural Economics, Wiley Blackwell, vol. 71(3), pages 698-718, September.
    16. Danuse Nerudova & Marian Dobranschi, 2019. "Alternative method to measure the VAT gap in the EU: Stochastic tax frontier model approach," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-38, January.
    17. De Nova, Carolina Carbajal, 2021. "Synthetic data. A novel proposed method for applied risk management," 95th Annual Conference, March 29-30, 2021, Warwick, UK (Hybrid) 311085, Agricultural Economics Society - AES.
    18. Phoebe Koundouri, 2004. "Current Issues in the Economics of Groundwater Resource Management," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 703-740, December.
    19. Luigi Biagini & Simone Severini, 2022. "How Does the Farmer Strike a Balance between Income and Risk across Inputs? An Application in Italian Field Crop Farms," Sustainability, MDPI, vol. 14(23), pages 1-15, December.
    20. Sanglestsawai, Santi & Rodriguez, Divina Gracia P. & Rejesus, Roderick M. & Yorobe, Jose M., 2017. "Production Risk, Farmer Welfare, and Bt Corn in the Philippines," Agricultural and Resource Economics Review, Cambridge University Press, vol. 46(3), pages 507-528, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:roaaec:310316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/feuagsk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.