IDEAS home Printed from https://ideas.repec.org/a/ags/joaaec/15458.html
   My bibliography  Save this article

Risk Effects Of Alternative Winter Cover Crop, Tillage, And Nitrogen Fertilization Systems In Cotton Production

Author

Listed:
  • Larson, James A.
  • Jaenicke, Edward C.
  • Roberts, Roland K.
  • Tyler, Donald D.

Abstract

A Just-Pope model was developed to assess tillage, nitrogen, weather, and pest effects on risk for cotton grown after alternative winter cover crops. Yield risk for cotton after hairy vetch was less than for cotton with no winter cover when no nitrogen fertilizer was used to supplement the vetch nitrogen. However, because cotton after vetch has a higher production cost, farmers growing conventionally tilled cotton may be slow to adapt because risk-return tradeoffs may be unacceptable under risk neutrality and risk aversion. For risk-averse farmers who have already adopted no tillage, cotton grown after hairy vetch is risk efficient.

Suggested Citation

  • Larson, James A. & Jaenicke, Edward C. & Roberts, Roland K. & Tyler, Donald D., 2001. "Risk Effects Of Alternative Winter Cover Crop, Tillage, And Nitrogen Fertilization Systems In Cotton Production," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 33(3), pages 1-13, December.
  • Handle: RePEc:ags:joaaec:15458
    DOI: 10.22004/ag.econ.15458
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/15458/files/33030445.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.15458?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Richard E. Just & Rulon D. Pope, 1979. "Production Function Estimation and Related Risk Considerations," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 61(2), pages 276-284.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Howard, Donald D. & English, Burton C. & Larson, James A. & Roberts, Roland K. & Walters, Jeremy T., 2004. "Effects Of Risk, Disease, And Nitrogen Source On Optimal Nitrogen Fertilization Rates In Winter Wheat Production," 2004 Annual Meeting, February 14-18, 2004, Tulsa, Oklahoma 34688, Southern Agricultural Economics Association.
    2. Roberts, Roland K. & Walters, Jeremy T. & Larson, James A. & English, Burton C. & Howard, Donald D., 2004. "Optimal Nitrogen Fertilization Rates in Winter Wheat Production as Affected by Risk, Disease, and Nitrogen Source," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 36(1), pages 1-13, April.
    3. Bazen, Ernest F. & Roberts, Roland K. & Travis, John & Larson, James A., 2008. "Factors Affecting Hay Supply and Demand in Tennessee," 2008 Annual Meeting, February 2-6, 2008, Dallas, Texas 6889, Southern Agricultural Economics Association.
    4. Walters, Jeremy T. & Roberts, Roland K. & Larson, James A. & English, Burton C. & Howard, Donald D., 2003. "Effects Of Risk On Optimal Nitrogen Fertilization Dates In Winter Wheat Production As Affected By Disease And Nitrogen Source," 2003 Annual Meeting, February 1-5, 2003, Mobile, Alabama 35035, Southern Agricultural Economics Association.
    5. Chen, Le & Rejesus, Roderick M. & Brown, Zachary S. & Boyer, Christopher M. & Larson, James A., 2020. "Adoption of Cover Crops under Uncertainty: A Real Options Method," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304391, Agricultural and Applied Economics Association.
    6. Jaenicke, Edward C. & Larson, James A., 2001. "Production Risk Revisited In A Stochastic Frontier Framework: Evaluating Noise And Inefficiency In Cover Crop Systems," 2001 Annual meeting, August 5-8, Chicago, IL 20477, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    7. Jaenicke, Edward C. & Frechette, Darren L. & Larson, James A., 2003. "Estimating Production Risk and Inefficiency Simultaneously: An Application to Cotton Cropping Systems," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 28(3), pages 1-18, December.
    8. Adusumilli, Naveen & Wang, Hua & Dodla, Syam & Deliberto, Michael, 2020. "Estimating risk premiums for adopting no-till and cover crops management practices in soybean production system using stochastic efficiency approach," Agricultural Systems, Elsevier, vol. 178(C).
    9. English, Alicia & Tyner, Wallace E. & Sesmero, Juan P. & Owens, Phillip & Muth, David, 2012. "Environmental Impacts of Stover Removal in the Corn Belt," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124873, Agricultural and Applied Economics Association.
    10. Boyer, Christopher & Harmon, Xavier & Lambert, Dayton & Larson, James & Donald, Tyler, 2017. "Risk Effects on Nitrogen Fertilization and Cost-Share Payments under Alternative Tillage and Cover Crop Systems for Cotton," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252482, Southern Agricultural Economics Association.
    11. Boyer, Christopher N. & Jensen, Kimberly L. & McLeod, Elizabeth & Larson, James A., 2016. "Upland Cotton Producers’ Willingness to participate in a BMP/STAX Pilot Program," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 234975, Agricultural and Applied Economics Association.
    12. Boyer, Christopher M. & Lambert, Dayton M. & Larson, James A. & Tyler, Donald, 2017. "Investment Analysis of Long-term Cover Crops and Tillage Systems on Cotton Production," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258525, Agricultural and Applied Economics Association.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francis Tsiboe & Jesse Tack, 2022. "Utilizing Topographic and Soil Features to Improve Rating for Farm‐Level Insurance Products," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 52-69, January.
    2. Nathan D. DeLay & Nathanael M. Thompson & James R. Mintert, 2022. "Precision agriculture technology adoption and technical efficiency," Journal of Agricultural Economics, Wiley Blackwell, vol. 73(1), pages 195-219, February.
    3. Chiwaula, Levison & Waibel, Hermann, 2011. "Does seasonal vulnerability to poverty matter? A case study from the Hadejia-Nguru Wetlands in Nigeria," Proceedings of the German Development Economics Conference, Berlin 2011 19, Verein für Socialpolitik, Research Committee Development Economics.
    4. Kawasaki, Kentaro, 2010. "The costs and benefits of land fragmentation of rice farms in Japan," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(4), pages 1-18.
    5. Muhammad Rizwan & Ping Qing & Abdul Saboor & Muhammad Amjed Iqbal & Adnan Nazir, 2020. "Production Risk and Competency among Categorized Rice Peasants: Cross-Sectional Evidence from an Emerging Country," Sustainability, MDPI, vol. 12(9), pages 1-15, May.
    6. Francisco J. André & Laura Riesgo, 2006. "A Duality Procedure to Elicit Nonlinear Multiattribute Utility Functions," Working Papers 06.02, Universidad Pablo de Olavide, Department of Economics.
    7. Samira Shayanmehr & Shida Rastegari Henneberry & Mahmood Sabouhi Sabouni & Naser Shahnoushi Foroushani, 2020. "Climate Change and Sustainability of Crop Yield in Dry Regions Food Insecurity," Sustainability, MDPI, vol. 12(23), pages 1-24, November.
    8. Richard E. Just & Gordon C. Rausser & David Zilberman, 1992. "Framework for Analyzing Specific Agricultural Policy Reform, A," Center for Agricultural and Rural Development (CARD) Publications 90-gatt18, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    9. Yesuf, Mahmud & Kassie, Menale & Köhlin, Gunnar, 2009. "Risk Implications of Farm Technology Adoption in the Ethiopian Highlands," Working Papers in Economics 404, University of Gothenburg, Department of Economics.
    10. Rocha, Jr., Adauto B. & Fulginiti, Lilyan E. & Perrin, Richard K. & Walters, Cory G., 2022. "What is the value of crop insurance for Nebraskan farmers?," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322529, Agricultural and Applied Economics Association.
    11. Zeytoon Nejad Moosavian, Seyyed Ali & Goodwin, Barry K., 2018. "GENERALIZING THE GENERAL: Generalizing the CES Production Function to Allow for the Flexibility of Input-Driven Output Risk and Viability of Input Thresholds," 2018 Annual Meeting, August 5-7, Washington, D.C. 274352, Agricultural and Applied Economics Association.
    12. Paulson, Nicholas D. & Babcock, Bruce A., 2010. "Readdressing the Fertilizer Problem," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 35(3), pages 1-17, December.
    13. Tristan Le Cotty & Elodie Maître d’Hôtel & Raphael Soubeyran & Julie Subervie, 2018. "Linking Risk Aversion, Time Preference and Fertiliser Use in Burkina Faso," Journal of Development Studies, Taylor & Francis Journals, vol. 54(11), pages 1991-2006, November.
    14. Bakhshoodeh, Mohamad & Shajari, S., 2006. "Adoption of New Seed Varieties Under Production Risk: An Application to Rice in Iran," 2006 Annual Meeting, August 12-18, 2006, Queensland, Australia 25578, International Association of Agricultural Economists.
    15. Smale, Melinda & Singh, Joginder & Di Falco, Salvatore & Zambrano, Patricia, 2008. "Wheat breeding, productivity and slow variety change: evidence from the Punjab of India after the Green Revolution," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(4), pages 1-14.
    16. Mitchell, Paul David, 1999. "The theory and practice of green insurance: insurance to encourage the adoption of corn rootworm IPM," ISU General Staff Papers 1999010108000013154, Iowa State University, Department of Economics.
    17. Ali D. Cagdas & Scott R. Jeffrey & Elwin G. Smith & Peter C. Boxall, 2016. "Environmental Stewardship and Technical Efficiency in Canadian Prairie Canola Production," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 64(3), pages 455-477, September.
    18. Liverpool-Tasie, Lenis Saweda O. & Omonona, Bolarin T. & Sanou, Awa & Ogunleye, Wale O., 2017. "Is increasing inorganic fertilizer use for maize production in SSA a profitable proposition? Evidence from Nigeria," Food Policy, Elsevier, vol. 67(C), pages 41-51.
    19. Carmen Vicien, 1991. "Les modèles de simulation comme fonctions de production," Économie rurale, Programme National Persée, vol. 204(1), pages 46-50.
    20. Alain Carpentier & Robert D. Weaver, 1995. "The contribution of pesticides to agricultural production : a reconsideration [Le rôle des pesticides dans la production agricole : nouvelle approche]," Post-Print hal-02850939, HAL.

    More about this item

    Keywords

    Crop Production/Industries;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:joaaec:15458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/saeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.