IDEAS home Printed from https://ideas.repec.org/a/ags/ijofsd/345892.html
   My bibliography  Save this article

Pricing Perishables: Robust Price Assurance

Author

Listed:
  • Weaver, Robert D.
  • Moon, Yongma

Abstract

As perishable products are worthless at end-of-life, for a given supply prices are often dynamically adjusted to ensure inventory is exhausted at end-of-life. When consumers expect such price reductions, they may strategically time their purchases. These two conditions pose a complex problem for pricing. Given inventory, cost of production is sunk. Thus, the dynamic path for prices must be set to maximize revenues with an eye on inventory take-down as well as to discourage strategic behavior. This problem is further challenged when prices and the extent of consumer strategic behavior are uncertain. This paper presents an approach for pricing a set of perishable products that are highly substitutable, yet differentiated to target a set of consumer segments. We propose and analyze a price assurance scheme as a solution to the strategic behavior of consumers and price uncertainty. We present and evaluate our price assurance approach by comparing two price assurance schemes: i) ex-post price assurance, and ii) ex-ante price assurance to risk neutral dynamic pricing without regard for consumer strategic behavior. These approaches have not to our knowledge been previously considered in our setting of perishables, uncertain consumer strategic behavior, and price uncertainty. Our numerical experiments show that our robust optimization model prevents loss when a firm encounters the worst-case demand and outperforms a risk-neutral pricing model. Comparison across our different pricing schemes provides conditions under which particular schemes may dominate others.

Suggested Citation

  • Weaver, Robert D. & Moon, Yongma, 2020. "Pricing Perishables: Robust Price Assurance," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 11(01), January.
  • Handle: RePEc:ags:ijofsd:345892
    DOI: 10.22004/ag.econ.345892
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/345892/files/PRICING%20PERISHABLES%20-%20ROBUST%20PRICE%20ASSURANCE.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.345892?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    2. Yingjie Lan & Huina Gao & Michael O. Ball & Itir Karaesmen, 2008. "Revenue Management with Limited Demand Information," Management Science, INFORMS, vol. 54(9), pages 1594-1609, September.
    3. Laurent El Ghaoui & Maksim Oks & Francois Oustry, 2003. "Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach," Operations Research, INFORMS, vol. 51(4), pages 543-556, August.
    4. Zhang, Dan & Cooper, William L., 2009. "Pricing substitutable flights in airline revenue management," European Journal of Operational Research, Elsevier, vol. 197(3), pages 848-861, September.
    5. Xuanming Su, 2007. "Intertemporal Pricing with Strategic Customer Behavior," Management Science, INFORMS, vol. 53(5), pages 726-741, May.
    6. Yuri Levin & Jeff McGill & Mikhail Nediak, 2007. "Price Guarantees in Dynamic Pricing and Revenue Management," Operations Research, INFORMS, vol. 55(1), pages 75-97, February.
    7. Dan Zhang & William L. Cooper, 2005. "Revenue Management for Parallel Flights with Customer-Choice Behavior," Operations Research, INFORMS, vol. 53(3), pages 415-431, June.
    8. Lingxiu Dong & Panos Kouvelis & Zhongjun Tian, 2009. "Dynamic Pricing and Inventory Control of Substitute Products," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 317-339, December.
    9. Alper Atamtürk & Muhong Zhang, 2007. "Two-Stage Robust Network Flow and Design Under Demand Uncertainty," Operations Research, INFORMS, vol. 55(4), pages 662-673, August.
    10. Gabriel Bitran & René Caldentey, 2003. "An Overview of Pricing Models for Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 5(3), pages 203-229, August.
    11. Qian Liu & Garrett van Ryzin, 2008. "On the Choice-Based Linear Programming Model for Network Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 10(2), pages 288-310, October.
    12. Xuanming Su & Fuqiang Zhang, 2008. "Strategic Customer Behavior, Commitment, and Supply Chain Performance," Management Science, INFORMS, vol. 54(10), pages 1759-1773, October.
    13. Aharon Ben‐Tal & Marc Teboulle, 2007. "An Old‐New Concept Of Convex Risk Measures: The Optimized Certainty Equivalent," Mathematical Finance, Wiley Blackwell, vol. 17(3), pages 449-476, July.
    14. Yuri Levin & Jeff McGill & Mikhail Nediak, 2009. "Dynamic Pricing in the Presence of Strategic Consumers and Oligopolistic Competition," Management Science, INFORMS, vol. 55(1), pages 32-46, January.
    15. Yossi Aviv & Amit Pazgal, 2008. "Optimal Pricing of Seasonal Products in the Presence of Forward-Looking Consumers," Manufacturing & Service Operations Management, INFORMS, vol. 10(3), pages 339-359, December.
    16. Wedad Elmaghraby & P{i}nar Keskinocak, 2003. "Dynamic Pricing in the Presence of Inventory Considerations: Research Overview, Current Practices, and Future Directions," Management Science, INFORMS, vol. 49(10), pages 1287-1309, October.
    17. Constantinos Maglaras & Joern Meissner, 2006. "Dynamic Pricing Strategies for Multiproduct Revenue Management Problems," Manufacturing & Service Operations Management, INFORMS, vol. 8(2), pages 136-148, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claya, Pablo Mac & Accursia, Federico M. & Harmath, Pedro, 2022. "Surviving as an Argentine Farmer: Factors that Influence Risk Management Strategies," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 13(04), December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weaver, Robert D. & Moon, Yongma, 2018. "Pricing Perishables with Uncertain Demand, Substitutes, and Consumer Heterogeneity," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 9(5), December.
    2. Weaver, Robert D. & Moon, Yongma, 2011. "Pricing Perishables," 2011 International European Forum, February 14-18, 2011, Innsbruck-Igls, Austria 122007, International European Forum on System Dynamics and Innovation in Food Networks.
    3. Ming Chen & Zhi-Long Chen, 2018. "Robust Dynamic Pricing with Two Substitutable Products," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 249-268, May.
    4. Dan Zhang & Larry Weatherford, 2017. "Dynamic Pricing for Network Revenue Management: A New Approach and Application in the Hotel Industry," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 18-35, February.
    5. Dasu, Sriram & Tong, Chunyang, 2010. "Dynamic pricing when consumers are strategic: Analysis of posted and contingent pricing schemes," European Journal of Operational Research, Elsevier, vol. 204(3), pages 662-671, August.
    6. Chia-Wei Kuo & Hyun-Soo Ahn & Göker Aydın, 2011. "Dynamic Pricing of Limited Inventories When Customers Negotiate," Operations Research, INFORMS, vol. 59(4), pages 882-897, August.
    7. Shanshan Hu & Xing Hu & Qing Ye, 2017. "Optimal Rebate Strategies Under Dynamic Pricing," Operations Research, INFORMS, vol. 65(6), pages 1546-1561, December.
    8. Guillermo Gallego & Michael Z. F. Li & Yan Liu, 2020. "Dynamic Nonlinear Pricing of Inventories over Finite Sales Horizons," Operations Research, INFORMS, vol. 68(3), pages 655-670, May.
    9. Yalç{i}n Akçay & Harihara Prasad Natarajan & Susan H. Xu, 2010. "Joint Dynamic Pricing of Multiple Perishable Products Under Consumer Choice," Management Science, INFORMS, vol. 56(8), pages 1345-1361, August.
    10. Dan Zhang & Zhaosong Lu, 2013. "Assessing the Value of Dynamic Pricing in Network Revenue Management," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 102-115, February.
    11. Oh, Jaelynn & Huh, Woonghee Tim, 2022. "Hidden city travel and its impact on airfare: The case with competing airlines," Transportation Research Part B: Methodological, Elsevier, vol. 156(C), pages 101-109.
    12. Yao Cui & A. Yeşim Orhun & Izak Duenyas, 2019. "How Price Dispersion Changes When Upgrades Are Introduced: Theory and Empirical Evidence from the Airline Industry," Management Science, INFORMS, vol. 65(8), pages 3835-3852, August.
    13. Xing Hu & Zhixi Wan & Nagesh N. Murthy, 2019. "Dynamic Pricing of Limited Inventories with Product Returns," Manufacturing & Service Operations Management, INFORMS, vol. 21(3), pages 501-518, July.
    14. Adam J. Mersereau & Dan Zhang, 2012. "Markdown Pricing with Unknown Fraction of Strategic Customers," Manufacturing & Service Operations Management, INFORMS, vol. 14(3), pages 355-370, July.
    15. Lingxiu Dong & Panos Kouvelis & Zhongjun Tian, 2009. "Dynamic Pricing and Inventory Control of Substitute Products," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 317-339, December.
    16. Cuihong Li & Fuqiang Zhang, 2013. "Advance Demand Information, Price Discrimination, and Preorder Strategies," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 57-71, September.
    17. Pavithra Harsha & Shivaram Subramanian & Joline Uichanco, 2019. "Dynamic Pricing of Omnichannel Inventories," Service Science, INFORMS, vol. 21(1), pages 47-65, January.
    18. Dongdong Yu & Miyu Wan & Chunlin Luo, 2022. "Dynamic pricing and dual‐channel choice in the presence of strategic consumers," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(6), pages 2392-2408, September.
    19. René Caldentey & Ying Liu & Ilan Lobel, 2017. "Intertemporal Pricing Under Minimax Regret," Operations Research, INFORMS, vol. 65(1), pages 104-129, February.
    20. Yossi Aviv & Mike Mingcheng Wei & Fuqiang Zhang, 2019. "Responsive Pricing of Fashion Products: The Effects of Demand Learning and Strategic Consumer Behavior," Management Science, INFORMS, vol. 65(7), pages 2982-3000, July.

    More about this item

    Keywords

    Demand and Price Analysis;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ijofsd:345892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/centmde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.