IDEAS home Printed from https://ideas.repec.org/a/ags/ijamad/262550.html
   My bibliography  Save this article

Seasonality and Forecasting of Monthly Broiler Price in Iran

Author

Listed:
  • Falsafian, Azadeh

Abstract

The objective of this study was to model seasonal behavior of broiler price in Iran that can be used to forecast the monthly broiler prices. In this context, the periodic autoregressive (PAR), the seasonal integrated models, and the Box-Jenkins (SARIMA) models were used as the primary nominates for the forecasting model. It was shown that the PAR (q) model could not be considered as an appropriate method for modeling seasonal behavior of the broiler price. Results of seasonal unit root test indicated that the monthly prices of broiler follow a non-stationary stochastic seasonal process. Accordingly, the regression-based model is an appropriate modeling framework. While SARIMA is an alternative modeling approach, the RMSE of forecasting error suggested the superiority of the regression- based model over the SARIMA model. Therefore, the estimated parameters of the regression-based model can be used to predict the monthly prices of broiler in Iran.

Suggested Citation

  • Falsafian, Azadeh, 2016. "Seasonality and Forecasting of Monthly Broiler Price in Iran," International Journal of Agricultural Management and Development (IJAMAD), Iranian Association of Agricultural Economics, vol. 6(2), June.
  • Handle: RePEc:ags:ijamad:262550
    DOI: 10.22004/ag.econ.262550
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/262550/files/IJAMAD_Volume%206_Issue%202_Pages%20173-180.pdf
    Download Restriction: no

    File URL: https://ageconsearch.umn.edu/record/262550/files/IJAMAD_Volume%206_Issue%202_Pages%20173-180.pdf?subformat=pdfa
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.262550?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Arnade, Carlos & Pick, Daniel, 1998. "Seasonality and unit roots: the demand for fruits," Agricultural Economics, Blackwell, vol. 18(1), pages 53-62, January.
    2. Joseph Beaulieu, J. & Miron, Jeffrey A., 1993. "Seasonal unit roots in aggregate U.S. data," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 305-328.
    3. Brendstrup, Bjarne & Hylleberg, Svend & Nielsen, Morten Rregaard & Skipper, Lars & Stentoft, Lars, 2004. "Seasonality In Economic Models," Macroeconomic Dynamics, Cambridge University Press, vol. 8(03), pages 362-394, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Svend Hylleberg, 2006. "Seasonal Adjustment," Economics Working Papers 2006-04, Department of Economics and Business Economics, Aarhus University.
    2. Braun, R. Anton & Evans, Charles L., 1995. "Seasonality and equilibrium business cycle theories," Journal of Economic Dynamics and Control, Elsevier, vol. 19(3), pages 503-531, April.
    3. Ankamah-Yeboah, Isaac, 2012. "Spatial Price Transmission in the Regional Maize Markets in Ghana," MPRA Paper 49720, University Library of Munich, Germany.
    4. D. Evans & E. Kula & H. Sezer, 2005. "Regional welfare weights for the UK: England, Scotland, Wales and Northern Ireland," Regional Studies, Taylor & Francis Journals, vol. 39(7), pages 923-937.
    5. Chambers, Marcus J. & Ercolani, Joanne S. & Taylor, A.M. Robert, 2014. "Testing for seasonal unit roots by frequency domain regression," Journal of Econometrics, Elsevier, vol. 178(P2), pages 243-258.
    6. Shin, Dong Wan & Oh, Man-Suk, 2000. "Semiparametric tests for seasonal unit roots based on a semiparametric feasible GLSE," Statistics & Probability Letters, Elsevier, vol. 50(3), pages 207-218, November.
    7. Paulo Rodrigues & Philip Hans Franses, 2005. "A sequential approach to testing seasonal unit roots in high frequency data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(6), pages 555-569.
    8. Paulo Rodrigues & Denise Osborn, 1999. "Performance of seasonal unit root tests for monthly data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(8), pages 985-1004.
    9. Hans Franses, Philip & Koehler, Anne B., 1998. "A model selection strategy for time series with increasing seasonal variation," International Journal of Forecasting, Elsevier, vol. 14(3), pages 405-414, September.
    10. Smith, Jeremy & Otero, Jesus, 1997. "Structural breaks and seasonal integration," Economics Letters, Elsevier, vol. 56(1), pages 13-19, September.
    11. Beenstock, Michael & Reingewertz, Yaniv & Paldor, Nathan, 2016. "Testing the historic tracking of climate models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1234-1246.
    12. del Barrio Castro, Tomás & Osborn, Denise R., 2023. "Periodic Integration and Seasonal Unit Roots," MPRA Paper 117935, University Library of Munich, Germany, revised 2023.
    13. D R Osborn & M Sensier, 2004. "Modelling UK Inflation: Persistence, Seasonality and Monetary Policy," Centre for Growth and Business Cycle Research Discussion Paper Series 46, Economics, The University of Manchester.
    14. Giancarlo Bruno & Claudio Lupi, 2004. "Forecasting industrial production and the early detection of turning points," Empirical Economics, Springer, vol. 29(3), pages 647-671, September.
    15. Hamori, Shigeyuki, 2001. "Seasonality and stock returns: some evidence from Japan," Japan and the World Economy, Elsevier, vol. 13(4), pages 463-481, December.
    16. Evren Erdoğan Cosar, 2006. "Seasonal behaviour of the consumer price index of Turkey," Applied Economics Letters, Taylor & Francis Journals, vol. 13(7), pages 449-455.
    17. Guglielmo Maria Caporale & Luis Gil-Alana, 2006. "Long memory at the long-run and the seasonal monthly frequencies in the US money stock," Applied Economics Letters, Taylor & Francis Journals, vol. 13(15), pages 965-968.
    18. Svetlana Gurieva & Irina Kuznetsova & Ekaterina Yumkina & Sergey Manichev & Elena Sidorenko, 2017. "Emotional Intelligence and Behavior Styles of Russian Middle Managers in Business Communication," European Research Studies Journal, European Research Studies Journal, vol. 0(4B), pages 679-693.
    19. Lütkepohl,Helmut & Krätzig,Markus (ed.), 2004. "Applied Time Series Econometrics," Cambridge Books, Cambridge University Press, number 9780521547871, January.
    20. Cecchetti, Stephen G & Karras, Georgios, 1994. "Sources of Output Fluctuations during the Interwar Period: Further Evidence on the Causes of the Great Depression," The Review of Economics and Statistics, MIT Press, vol. 76(1), pages 80-102, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ijamad:262550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/iraesea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.