IDEAS home Printed from https://ideas.repec.org/a/ags/ijamad/262494.html
   My bibliography  Save this article

A Comparative Study of Energy Use and Greenhouse Gas Emissions of Canola Production

Author

Listed:
  • Khojastehpour, Mehdi
  • Nikkhah, Amin
  • Hashemabadi, Davood

Abstract

In this research, the energy flow and production energy indices of canola cultivation in Trakya province of Turkey, Golestan and Mazandaran provinces of Iran were compared. Diesel fuel and chemical fertilizer inputs were the highest consumer of energy in the production of canola in these three regions. The results indicated that despite the higher energy use of machinery in Trakya province of Turkey, the energy use of diesel fuel in this province is less than the energy consumed in the two northern provinces of Iran, which could be due to available old machines for the production of canola in Mazandaran and Golestan provinces. Total greenhouse gas emissions of canola production for these regions were computed 562.85, 652.86 and 887.30 kgCO 2 eq ha -1 , respectively. The inputs of chemical fertilizer and diesel fuel in canola production produced the highest percentage of gas emissions in these three areas. Energy consumption for potential feedstock production for one kg production of biodiesel fuel in these provinces was calculated as 14.76, 20.66 and 37.77 MJ, respectively. The amounts of greenhouse gas emissions for potential feedstock production for one kg production of biodiesel were obtained 0.45, 0.76 and 1.17 kgCO 2 eq for Trakya, Golestan and Mazandaran provinces, respectively.

Suggested Citation

  • Khojastehpour, Mehdi & Nikkhah, Amin & Hashemabadi, Davood, 2015. "A Comparative Study of Energy Use and Greenhouse Gas Emissions of Canola Production," International Journal of Agricultural Management and Development (IJAMAD), Iranian Association of Agricultural Economics, vol. 5(1), March.
  • Handle: RePEc:ags:ijamad:262494
    DOI: 10.22004/ag.econ.262494
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/262494/files/IJAMAD_Volume%205_Issue%201_Pages%2051-58.pdf
    Download Restriction: no

    File URL: https://ageconsearch.umn.edu/record/262494/files/IJAMAD_Volume%205_Issue%201_Pages%2051-58.pdf?subformat=pdfa
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.262494?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Asgharipour, Mohammad Reza & Mondani, Farzad & Riahinia, Shahram, 2012. "Energy use efficiency and economic analysis of sugar beet production system in Iran: A case study in Khorasan Razavi province," Energy, Elsevier, vol. 44(1), pages 1078-1084.
    2. Ahmad, A.L. & Yasin, N.H. Mat & Derek, C.J.C. & Lim, J.K., 2011. "Microalgae as a sustainable energy source for biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 584-593, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikkhah, Amin & Royan, Mahsa & Khojastehpour, Mehdi & Bacenetti, Jacopo, 2017. "Environmental impacts modeling of Iranian peach production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 677-682.
    2. Firouzi, Saeed & Nikkhah, Amin & Aminpanah, Hashem, 2018. "Resource use efficiency of rice production upon single cropping and ratooning agro-systems in terms of bioethanol feedstock production," Energy, Elsevier, vol. 150(C), pages 694-701.
    3. Motamedolshariati, Seyed Masoud & Sadrnia, Hassan & Aghkhani, Mohammad Hossein & Khojastehpour, Mehdi, 2017. "Modelling of Greenhouse Gas Emissions from Wheat Production in Irrigated and Rain-Fed Systems in Khorasan Razavi Province, Iran," International Journal of Agricultural Management and Development (IJAMAD), Iranian Association of Agricultural Economics, vol. 7(1), March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eyni-Nargeseh, Hamed & Asgharipour, Mohammad Reza & Rahimi-Moghaddam, Sajjad & Gilani, Abdolali & Damghani, Abdolmajid Mahdavi & Azizi, Khosro, 2023. "Which rice farming system is more environmentally friendly in Khuzestan province, Iran? A study based on emergy analysis," Ecological Modelling, Elsevier, vol. 481(C).
    2. Cao, Yan & Doustgani, Amir & Salehi, Abozar & Nemati, Mohammad & Ghasemi, Amir & Koohshekan, Omid, 2020. "The economic evaluation of establishing a plant for producing biodiesel from edible oil wastes in oil-rich countries: Case study Iran," Energy, Elsevier, vol. 213(C).
    3. Bharathiraja, B. & Chakravarthy, M. & Ranjith Kumar, R. & Yogendran, D. & Yuvaraj, D. & Jayamuthunagai, J. & Praveen Kumar, R. & Palani, S., 2015. "Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 634-653.
    4. Mandolesi de Araújo, Carlos Daniel & de Andrade, Claudia Cristina & de Souza e Silva, Erika & Dupas, Francisco Antonio, 2013. "Biodiesel production from used cooking oil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 445-452.
    5. Thomassen, Gwenny & Van Dael, Miet & Lemmens, Bert & Van Passel, Steven, 2017. "A review of the sustainability of algal-based biorefineries: Towards an integrated assessment framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 876-887.
    6. Unakıtan, Gökhan & Aydın, Başak, 2018. "A comparison of energy use efficiency and economic analysis of wheat and sunflower production in Turkey: A case study in Thrace Region," Energy, Elsevier, vol. 149(C), pages 279-285.
    7. Rahman, Md. Mizanur & B. Mostafiz, Suraiya & Paatero, Jukka V. & Lahdelma, Risto, 2014. "Extension of energy crops on surplus agricultural lands: A potentially viable option in developing countries while fossil fuel reserves are diminishing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 108-119.
    8. Krishnan, Sooridarsan & Ghani, Noraini Abd & Aminuddin, Noor Fathanah & Quraishi, Khurrum Shehzad & Azman, Ninna Sakina & Cravotto, Giancarlo & Leveque, Jean-Marc, 2020. "Microwave-assisted lipid extraction from Chlorella vulgaris in water with 0.5%–2.5% of imidazolium based ionic liquid as additive," Renewable Energy, Elsevier, vol. 149(C), pages 244-252.
    9. Nirmala, N. & Dawn, S.S., 2021. "Optimization of Chlorella variabilis. MK039712.1 lipid transesterification using Response Surface Methodology and analytical characterization of biodiesel," Renewable Energy, Elsevier, vol. 179(C), pages 1663-1673.
    10. Neto, Ana Maria Pereira & Sotana de Souza, Rafael Augusto & Leon-Nino, Amanda Denisse & da Costa, Joana D'arc Aparecida & Tiburcio, Rodolfo Sbrolini & Nunes, Thaís Abreu & Sellare de Mello, Thaís Cris, 2013. "Improvement in microalgae lipid extraction using a sonication-assisted method," Renewable Energy, Elsevier, vol. 55(C), pages 525-531.
    11. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu, 2020. "Experimental assessment on the regulated and unregulated emissions of DI diesel engine fuelled with Chlorella emersonii methyl ester (CEME)," Renewable Energy, Elsevier, vol. 151(C), pages 88-102.
    12. Chiaramonti, David & Rizzo, Andrea Maria & Spadi, Adriano & Prussi, Matteo & Riccio, Giovanni & Martelli, Francesco, 2013. "Exhaust emissions from liquid fuel micro gas turbine fed with diesel oil, biodiesel and vegetable oil," Applied Energy, Elsevier, vol. 101(C), pages 349-356.
    13. Chadwick, Dara T. & McDonnell, Kevin P. & Brennan, Liam P. & Fagan, Colette C. & Everard, Colm D., 2014. "Evaluation of infrared techniques for the assessment of biomass and biofuel quality parameters and conversion technology processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 672-681.
    14. Ju, Chao & Wang, Feng & Huang, Yong & Fang, Yunming, 2018. "Selective extraction of neutral lipid from wet algae paste and subsequently hydroconversion into renewable jet fuel," Renewable Energy, Elsevier, vol. 118(C), pages 521-526.
    15. Souza, Simone P. & Gopal, Anand R. & Seabra, Joaquim E.A., 2015. "Life cycle assessment of biofuels from an integrated Brazilian algae-sugarcane biorefinery," Energy, Elsevier, vol. 81(C), pages 373-381.
    16. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    17. Chaudry, Sofia & Bahri, Parisa A. & Moheimani, Navid R., 2015. "Pathways of processing of wet microalgae for liquid fuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1240-1250.
    18. Nikouei, Alireza & Asgharipour, Mohammad Reza & Marzban, Zahra, 2022. "Modeling land allocation to produce crops under economic and environmental goals in Iran: a multi-objective programming approach," Ecological Modelling, Elsevier, vol. 471(C).
    19. Chen, Hui & Wang, Jie & Zheng, Yanli & Zhan, Jiao & He, Chenliu & Wang, Qiang, 2018. "Algal biofuel production coupled bioremediation of biomass power plant wastes based on Chlorella sp. C2 cultivation," Applied Energy, Elsevier, vol. 211(C), pages 296-305.
    20. Lin, Kuang C. & Lin, Yuan-Chung & Hsiao, Yi-Hsing, 2014. "Microwave plasma studies of Spirulina algae pyrolysis with relevance to hydrogen production," Energy, Elsevier, vol. 64(C), pages 567-574.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ijamad:262494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/iraesea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.