IDEAS home Printed from https://ideas.repec.org/a/ags/ccsesa/230379.html
   My bibliography  Save this article

Enhancing Yields in Organic Crop Production by Eco-Functional Intensification

Author

Listed:
  • Jensen, Erik Steen
  • Bedoussac, Laurent
  • Carlsson, Georg
  • Journet, Etienne-Pascal
  • Justes, Eric
  • Hauggaard-Nielsen, Henrik

Abstract

Organic agriculture faces challenges to enhance food production per unit area and simultaneously reduce the environmental and climate impacts, e.g. nitrate leaching per unit area and greenhouse gas (GHG) emissions per unit mass produced. Eco-functional intensification is suggested as a means to reach these objectives. Eco-functional intensification involves activating more knowledge and refocusing the importance of ecosystem services in agriculture. Organic farmers manage agrobiodiversity by crop rotation (diversification in time). However, sole cropping (SC) of genetically identical plants in organic agriculture may limit resource use efficiency and yield per unit area. Intercropping (IC) of annual grain species, cultivar mixes, perennial grains, or forage species and forestry and annual crops (agroforestry) are examples of spatial crop diversification. Intercropping is based on eco-functional intensification and may enhance production by complementarity in resource use in time and space. Intercropping is based on the ecological principles of competition, facilitation and complementarity, which often increases the efficiency in acquisition and use of resources such as light, water and nutrients compared to sole crops, especially in low-input systems. Here we show that IC of cereals and grain legumes in European arable organic farming systems is an efficient tool for enhancing total grain yields compared to their respective sole crops. Simultaneously, we display how intercropping of cereals and legumes can be used as an efficient tool for weed management and to enhance product quality (i.e. cereal grain protein concentration). We discuss how intercropping contributes to efficient use of soil N sources and minimizes losses of N by nitrate leaching via Ecological Precision Farming. It is concluded that intercropping has a strong potential to increase yield and hereby reduce global climate impacts such as GHG kg-1 grain. Finally, we discuss likely barriers and lock-in effects for increased use of intercropping in organic farming and suggest a roadmap for innovation and implementation of IC strategies in organic agriculture.

Suggested Citation

  • Jensen, Erik Steen & Bedoussac, Laurent & Carlsson, Georg & Journet, Etienne-Pascal & Justes, Eric & Hauggaard-Nielsen, Henrik, 2015. "Enhancing Yields in Organic Crop Production by Eco-Functional Intensification," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 4(3 Special).
  • Handle: RePEc:ags:ccsesa:230379
    DOI: 10.22004/ag.econ.230379
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/230379/files/p42_42-50_.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.230379?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Verena Seufert & Navin Ramankutty & Jonathan A. Foley, 2012. "Comparing the yields of organic and conventional agriculture," Nature, Nature, vol. 485(7397), pages 229-232, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reed John Cowden & Ambreen Naz Shah & Lisa Mølgaard Lehmann & Lars Pødenphant Kiær & Christian Bugge Henriksen & Bhim Bahadur Ghaley, 2020. "Nitrogen Fertilizer Effects on Pea–Barley Intercrop Productivity Compared to Sole Crops in Denmark," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    2. Fan, Fan & Henriksen, Christian Bugge & Porter, John, 2016. "Valuation of ecosystem services in organic cereal crop production systems with different management practices in relation to organic matter input," Ecosystem Services, Elsevier, vol. 22(PA), pages 117-127.
    3. Yin, Wen & Chai, Qiang & Zhao, Cai & Yu, Aizhong & Fan, Zhilong & Hu, Falong & Fan, Hong & Guo, Yao & Coulter, Jeffrey A., 2020. "Water utilization in intercropping: A review," Agricultural Water Management, Elsevier, vol. 241(C).
    4. Sebastian Munz & David Reiser, 2020. "Approach for Image-Based Semantic Segmentation of Canopy Cover in Pea–Oat Intercropping," Agriculture, MDPI, vol. 10(8), pages 1-12, August.
    5. Mohamed Lazali & Simon Boudsocq & Elisa Taschen & Mohamed Farissi & Wissem Hamdi & Parthenopi Ralli & Hervé Sentenac, 2021. "CROSYMED Project: Enhancing Nutrient Use Efficiency through Legumes in Agroecosystems of the Mediterranean Basin," Sustainability, MDPI, vol. 13(9), pages 1-10, April.
    6. Sari J Himanen & Hanna Mäkinen & Karoliina Rimhanen & Riitta Savikko, 2016. "Engaging Farmers in Climate Change Adaptation Planning: Assessing Intercropping as a Means to Support Farm Adaptive Capacity," Agriculture, MDPI, vol. 6(3), pages 1-13, July.
    7. Röös, Elin & Patel, Mikaela & Spångberg, Johanna & Carlsson, Georg & Rydhmer, Lotta, 2016. "Limiting livestock production to pasture and by-products in a search for sustainable diets," Food Policy, Elsevier, vol. 58(C), pages 1-13.
    8. Aare, Ane Kirstine & Lund, Søren & Hauggaard-Nielsen, Henrik, 2021. "Exploring transitions towards sustainable farming practices through participatory research – The case of Danish farmers' use of species mixtures," Agricultural Systems, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gebhardt, Beate & Hellstern, Laura, 2024. "Nachhaltigkeitsexzellenz in der Landwirtschaft: Mehr Sichtbarkeit für die versteckten Leuchttürme der Alltagspraxis," Working Papers 346815, Universitaet Hohenheim, Institute of Agricultural Policy and Agricultural Markets.
    2. Anglade, J. & Billen, G. & Garnier, J. & Makridis, T. & Puech, T. & Tittel, C., 2015. "Nitrogen soil surface balance of organic vs conventional cash crop farming in the Seine watershed," Agricultural Systems, Elsevier, vol. 139(C), pages 82-92.
    3. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. John M. Wallace & Alwyn Williams & Jeffrey A. Liebert & Victoria J. Ackroyd & Rachel A. Vann & William S. Curran & Clair L. Keene & Mark J. VanGessel & Matthew R. Ryan & Steven B. Mirsky, 2017. "Cover Crop-Based, Organic Rotational No-Till Corn and Soybean Production Systems in the Mid-Atlantic United States," Agriculture, MDPI, vol. 7(4), pages 1-21, April.
    5. Movedi, Ermes & Valiante, Daniele & Colosio, Alessandro & Corengia, Luca & Cossa, Stefano & Confalonieri, Roberto, 2022. "A new approach for modeling crop-weed interaction targeting management support in operational contexts: A case study on the rice weeds barnyardgrass and red rice," Ecological Modelling, Elsevier, vol. 463(C).
    6. Wang, Linlin & Li, Qiang & Coulter, Jeffrey A. & Xie, Junhong & Luo, Zhuzhu & Zhang, Renzhi & Deng, Xiping & Li, Linglin, 2020. "Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 229(C).
    7. Yue Zhang & Yaqiang Dai & Yuanyuan Chen & Xinli Ke, 2022. "Coupling Coordination Development of New-Type Urbanization and Cultivated Land Low-Carbon Utilization in the Yangtze River Delta, China," Land, MDPI, vol. 11(6), pages 1-24, June.
    8. Lucia Mancini, 2013. "Conventional, Organic and Polycultural Farming Practices: Material Intensity of Italian Crops and Foodstuffs," Resources, MDPI, vol. 2(4), pages 1-23, December.
    9. Daniel P. Roberts & Autar K. Mattoo, 2018. "Sustainable Agriculture—Enhancing Environmental Benefits, Food Nutritional Quality and Building Crop Resilience to Abiotic and Biotic Stresses," Agriculture, MDPI, vol. 8(1), pages 1-24, January.
    10. Clarisse Mendoza Gonzalvo & Wilson Jr. Florendo Aala & Keshav Lall Maharjan, 2021. "Farmer Decision-Making on the Concept of Coexistence: A Comparative Analysis between Organic and Biotech Farmers in the Philippines," Agriculture, MDPI, vol. 11(9), pages 1-21, September.
    11. Nematollahi, Mohammadreza & Tajbakhsh, Alireza & Mosadegh Sedghy, Bahareh, 2021. "The reflection of competition and coordination on organic agribusiness supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    12. Atanu Mukherjee & Emmanuel C. Omondi & Paul R. Hepperly & Rita Seidel & Wade P. Heller, 2020. "Impacts of Organic and Conventional Management on the Nutritional Level of Vegetables," Sustainability, MDPI, vol. 12(21), pages 1-25, October.
    13. Sarah Rotz & Evan Fraser, 2015. "Resilience and the industrial food system: analyzing the impacts of agricultural industrialization on food system vulnerability," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(3), pages 459-473, September.
    14. Olson, Erik L., 2022. "‘Sustainable’ marketing mixes and the paradoxical consequences of good intentions," Journal of Business Research, Elsevier, vol. 150(C), pages 389-398.
    15. Seck, Abdoulaye & Thiam, Djiby Racine, 2022. "Understanding consumer attitudes to and valuation of organic food in Sub-Saharan Africa: A double-bound contingent method applied in Dakar, Senegal," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 17(1), March.
    16. Schindele, Stephan & Trommsdorff, Maximilian & Schlaak, Albert & Obergfell, Tabea & Bopp, Georg & Reise, Christian & Braun, Christian & Weselek, Axel & Bauerle, Andrea & Högy, Petra & Goetzberger, Ado, 2020. "Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications," Applied Energy, Elsevier, vol. 265(C).
    17. Karol Kociszewski & Andrzej Graczyk & Krystyna Mazurek-Łopacinska & Magdalena Sobocińska, 2020. "Social Values in Stimulating Organic Production Involvement in Farming—The Case of Poland," Sustainability, MDPI, vol. 12(15), pages 1-21, July.
    18. Sadowski, Arkadiusz & Wojcieszak-Zbierska, Monika Małgorzata & Zmyślona, Jagoda, 2024. "Agricultural production in the least developed countries and its impact on emission of greenhouse gases – An energy approach," Land Use Policy, Elsevier, vol. 136(C).
    19. Kalaitzandonakes, Nicholas & Lusk, Jayson & Magnier, Alexandre, 2018. "The price of non-genetically modified (non-GM) food," Food Policy, Elsevier, vol. 78(C), pages 38-50.
    20. Joseph, Sarah & Peters, Irene & Friedrich, Hanno, 2019. "Can Regional Organic Agriculture Feed the Regional Community? A Case Study for Hamburg and North Germany," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ccsesa:230379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: http://www.ccsenet.org/sar .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.