IDEAS home Printed from https://ideas.repec.org/a/ags/aolpei/116383.html
   My bibliography  Save this article

Weather derivative design in agriculture – a case study of barley in the Southern Moravia Region

Author

Listed:
  • Spicka, Jindrich

Abstract

The aim of this paper is to point out some problems of index estimation for the purposes of weather derivative valuation considering the particularities of agriculture. The assessment of the sensitivity of barley to weather over 40 years has been the basis for the design and valuation of weather derivative in the Czech Republic (The Southern Moravia Region). The analysis is based on regression modeling using temperature index and barley yield. The burn analysis based on parametric bootstrap is used as the method for the valuation of weather derivative contract. With the effective bootstrap tool, the burn analysis may easily be processed and the uncertainty about the pay-off, option price and statistics of probability distribution of revenues can be effectively determined. Nevertheless, the results of the analysis reveal a significant adverse impact of basis risk on the quality of agricultural weather derivative in the Czech growing conditions. The article outlines the scope for use of weather derivative as the reinsurance tool in regions with frequent occurrence of systematic weather risk.

Suggested Citation

  • Spicka, Jindrich, 2011. "Weather derivative design in agriculture – a case study of barley in the Southern Moravia Region," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 3(3), pages 1-7, September.
  • Handle: RePEc:ags:aolpei:116383
    DOI: 10.22004/ag.econ.116383
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/116383/files/agris_on-line_2011_3_spicka.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.116383?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. repec:cup:cbooks:9780521843713 is not listed on IDEAS
    2. Vedenov, Dmitry V. & Barnett, Barry J., 2004. "Efficiency of Weather Derivatives as Primary Crop Insurance Instruments," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 29(3), pages 1-17, December.
    3. Martin, Steven W. & Barnett, Barry J. & Coble, Keith H., 2001. "Developing And Pricing Precipitation Insurance," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 26(1), pages 1-14, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Turvey, Calum G. & Norton, Michael, 2008. "An Internet-Based Tool for Weather Risk Management," Agricultural and Resource Economics Review, Cambridge University Press, vol. 37(1), pages 63-78, April.
    2. Zhiwei Shen & Martin Odening, 2013. "Coping with systemic risk in index-based crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 44(1), pages 1-13, January.
    3. Thitipong Kanchai & Wuttichai Srisodaphol & Tippatai Pongsart & Watcharin Klongdee, 2024. "Evaluation of Weather Yield Index Insurance Exposed to Deluge Risk: The Case of Sugarcane in Thailand," JRFM, MDPI, vol. 17(3), pages 1-15, March.
    4. Juárez-Torres, Miriam & Sánchez-Aragón, Leonardo & Vedenov, Dmitry, 2017. "Weather Derivatives and Water Management in Developing Countries: An Application for an Irrigation District in Central Mexico," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 42(2), May.
    5. Ward, Patrick S. & Spielman, David J. & Ortega, David L., 2015. "Demand for Complementary Financial and Technological Tools for Managing Drought Risk," 2015 Conference, August 9-14, 2015, Milan, Italy 211909, International Association of Agricultural Economists.
    6. Raucci, Gian Lucca & Silveira, Rodrigo Lanna F. & Capitani, Daniel H D, 2018. "Development Of Weather Derivatives: Evidence From Brazilian Soybean Market," 2018 Annual Meeting, August 5-7, Washington, D.C. 274105, Agricultural and Applied Economics Association.
    7. Haruyoshi Ito & Jing Ai & Akihiko Ozawa, 2016. "Managing Weather Risks: The Case of J. League Soccer Teams in Japan," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(4), pages 877-912, December.
    8. Kapphan, Ines, 2011. "Weather insurance design with optimal hedging effectiveness," MPRA Paper 35861, University Library of Munich, Germany.
    9. Zhang, Li, 2008. "Three essays on agricultural risk and insurance," ISU General Staff Papers 2008010108000016857, Iowa State University, Department of Economics.
    10. Barnett, Barry J. & Barrett, Christopher B. & Skees, Jerry R., 2008. "Poverty Traps and Index-Based Risk Transfer Products," World Development, Elsevier, vol. 36(10), pages 1766-1785, October.
    11. Teresa Maestro & Barry J. Barnett & Keith H. Coble & Alberto Garrido & María Bielza, 2016. "Drought Index Insurance for the Central Valley Project in California," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 38(3), pages 521-545.
    12. Rigo, Roberta & Santos, Paulo & Frontuto, Vito, 2022. "Landscape heterogeneity, basis risk and the feasibility of index insurance: An analysis of rice in upland regions of Southeast Asia," Food Policy, Elsevier, vol. 108(C).
    13. Epperson, James E., 2008. "Securitizing peanut production risk with catastrophe (CAT) bonds," Faculty Series 44512, University of Georgia, Department of Agricultural and Applied Economics.
    14. Mengmeng Qiang & Manhong Shen & Guanjun Xia, 2023. "The effectiveness of weather index insurance in managing mariculture production risk," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(2), pages 245-262, April.
    15. Shenan Wu & Barry K. Goodwin & Keith Coble, 2020. "Moral hazard and subsidized crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 51(1), pages 131-142, January.
    16. Jesse B. Tack & David Ubilava, 2015. "Climate and agricultural risk: measuring the effect of ENSO on U.S. crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 46(2), pages 245-257, March.
    17. Buchholz, Matthias & Musshoff, Oliver, 2014. "The role of weather derivatives and portfolio effects in agricultural water management," Agricultural Water Management, Elsevier, vol. 146(C), pages 34-44.
    18. Alexis Berg & Philippe Quirion & Benjamin Sultan, 2009. "Weather-index drought insurance in Burkina-Faso: assessment of its potential interest to farmers," Post-Print hal-00520893, HAL.
    19. Musshoff, Oliver & Hirschauer, Norbert, 2008. "Hedging von Mengenrisiken in der Landwirtschaft – Wie teuer dürfen „ineffektive“ Wetterderivate sein?," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 57(05), pages 1-12.
    20. Zhang, Jing & Brown, Colin & Waldron, Scott, 2017. "Case study analysis on household attitudes towards weather index crop insurance in rural China," 2017 Conference (61st), February 7-10, 2017, Brisbane, Australia 258683, Australian Agricultural and Resource Economics Society.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aolpei:116383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/fevszcz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.