IDEAS home Printed from https://ideas.repec.org/a/ags/agreko/345243.html
   My bibliography  Save this article

Assessing the potential for electricity generation from animal waste biogas on South African farms

Author

Listed:
  • Standish, B.
  • Lutge, B.

Abstract

Electricity generation using animal manure is practised extensively in many parts of the world to improve farm profitability and to increase the contribution of renewable energy. This research assesses the financial viability of using pig and dairy manure to produce electricity on a small sample of farms in South Africa. Financial feasibility studies were carried out for both pig and dairy farms. This study also assessed the level of production and incentives that are necessary to make biogas a viable option for electricity generation. The results show that electricity generation on pig farms is potentially viable. This could be enhanced with various types of incentives. The sample of dairy farms on the other hand does not show much potential.

Suggested Citation

  • Standish, B. & Lutge, B., 2013. "Assessing the potential for electricity generation from animal waste biogas on South African farms," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 52(2), March.
  • Handle: RePEc:ags:agreko:345243
    DOI: 10.22004/ag.econ.345243
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/345243/files/Assessing%20the%20potential%20for%20electricity%20generation%20from%20animal%20waste%20biogas%20on%20South%20African%20farms.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.345243?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pipatmanomai, Suneerat & Kaewluan, Sommas & Vitidsant, Tharapong, 2009. "Economic assessment of biogas-to-electricity generation system with H2S removal by activated carbon in small pig farm," Applied Energy, Elsevier, vol. 86(5), pages 669-674, May.
    2. Rao, P. Venkateswara & Baral, Saroj S. & Dey, Ranjan & Mutnuri, Srikanth, 2010. "Biogas generation potential by anaerobic digestion for sustainable energy development in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2086-2094, September.
    3. Yiridoe, Emmanuel K. & Gordon, Robert & Brown, Bettina B., 2009. "Nonmarket cobenefits and economic feasibility of on-farm biogas energy production," Energy Policy, Elsevier, vol. 37(3), pages 1170-1179, March.
    4. Brown, Bettina B. & Yiridoe, Emmanuel K. & Gordon, Robert, 2007. "Impact of single versus multiple policy options on the economic feasibility of biogas energy production: Swine and dairy operations in Nova Scotia," Energy Policy, Elsevier, vol. 35(9), pages 4597-4610, September.
    5. Murphy, J. D. & McKeogh, E. & Kiely, G., 2004. "Technical/economic/environmental analysis of biogas utilisation," Applied Energy, Elsevier, vol. 77(4), pages 407-427, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:ags:ijag24:345243 is not listed on IDEAS
    2. Morin, Philippe & Marcos, Bernard & Moresoli, Christine & Laflamme, Claude B., 2010. "Economic and environmental assessment on the energetic valorization of organic material for a municipality in Quebec, Canada," Applied Energy, Elsevier, vol. 87(1), pages 275-283, January.
    3. Lauer, Markus & Hansen, Jason K. & Lamers, Patrick & Thrän, Daniela, 2018. "Making money from waste: The economic viability of producing biogas and biomethane in the Idaho dairy industry," Applied Energy, Elsevier, vol. 222(C), pages 621-636.
    4. Avaci, Angelica Buzinaro & Melegari de Souza, Samuel Nelson & Werncke, Ivan & Chaves, Luiz Inácio, 2013. "Financial economic scenario for the microgeneration of electric energy from swine culture-originated biogas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 272-276.
    5. Mudasser, Muhammad & Yiridoe, Emmanuel K. & Corscadden, Kenneth, 2015. "Cost-benefit analysis of grid-connected wind–biogas hybrid energy production, by turbine capacity and site," Renewable Energy, Elsevier, vol. 80(C), pages 573-582.
    6. Halder, P.K. & Paul, N. & Joardder, M.U.H. & Khan, M.Z.H. & Sarker, M., 2016. "Feasibility analysis of implementing anaerobic digestion as a potential energy source in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 124-134.
    7. Ribeiro, Eruin Martuscelli & Barros, Regina Mambeli & Tiago Filho, Geraldo Lúcio & dos Santos, Ivan Felipe Silva & Sampaio, Luma Canobre & Santos, Ticiane Vasco dos & da Silva, Fernando das Graças Bra, 2018. "GHG avoided emissions and economic analysis by power generation potential in posture aviaries in Brazil," Renewable Energy, Elsevier, vol. 120(C), pages 524-535.
    8. Namuli, R. & Pillay, P. & Jaumard, B. & Laflamme, C.B., 2013. "Threshold herd size for commercial viability of biomass waste to energy conversion systems on rural farms," Applied Energy, Elsevier, vol. 108(C), pages 308-322.
    9. Loganath, Radhakrishnan & Senophiyah-Mary, J., 2020. "Critical review on the necessity of bioelectricity generation from slaughterhouse industry waste and wastewater using different anaerobic digestion reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Li, Xue & Mupondwa, Edmund, 2018. "Commercial feasibility of an integrated closed-loop ethanol-feedlot-biodigester system based on triticale feedstock in Canadian Prairies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 401-413.
    11. Souza, Samuel Nelson M. de & Werncke, Ivan & Marques, Cleber Aimoni & Bariccatti, Reinaldo A. & Santos, Reginaldo F. & Nogueira, Carlos Eduardo C. & Bassegio, Doglas, 2013. "Electric energy micro-production in a rural property using biogas as primary source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 385-391.
    12. White, Andrew J. & Kirk, Donald W. & Graydon, John W., 2011. "Analysis of small-scale biogas utilization systems on Ontario cattle farms," Renewable Energy, Elsevier, vol. 36(3), pages 1019-1025.
    13. Asam, Zaki-ul-Zaman & Poulsen, Tjalfe Gorm & Nizami, Abdul-Sattar & Rafique, Rashad & Kiely, Ger & Murphy, Jerry D., 2011. "How can we improve biomethane production per unit of feedstock in biogas plants?," Applied Energy, Elsevier, vol. 88(6), pages 2013-2018, June.
    14. Smyth, Beatrice M. & Murphy, Jerry D. & O'Brien, Catherine M., 2009. "What is the energy balance of grass biomethane in Ireland and other temperate northern European climates?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2349-2360, December.
    15. Periyasamy Elaiyaraju & Nagarajan Partha, 2012. "Biogas Production from Sago (Tapioca) Wastewater Using Anaerobic Batch Reactor," Energy & Environment, , vol. 23(4), pages 631-645, June.
    16. Abhinav Choudhury & Stephanie Lansing, 2019. "Methane and Hydrogen Sulfide Production from Co-Digestion of Gummy Waste with a Food Waste, Grease Waste, and Dairy Manure Mixture," Energies, MDPI, vol. 12(23), pages 1-12, November.
    17. Vasiliki Kamperidou & Paschalina Terzopoulou, 2021. "Anaerobic Digestion of Lignocellulosic Waste Materials," Sustainability, MDPI, vol. 13(22), pages 1-23, November.
    18. Sohoo, Ihsanullah & Ritzkowski, Marco & Heerenklage, Jörn & Kuchta, Kerstin, 2021. "Biochemical methane potential assessment of municipal solid waste generated in Asian cities: A case study of Karachi, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    19. Graciela M. L. Ruiz-Aguilar & Juan H. Martínez-Martínez & Rogelio Costilla-Salazar & Sarai Camarena-Martínez, 2023. "Using Central Composite Design to Improve Methane Production from Anaerobic Digestion of Tomato Plant Waste," Energies, MDPI, vol. 16(14), pages 1-15, July.
    20. Gil-Carrera, Laura & Browne, James D. & Kilgallon, Ian & Murphy, Jerry D., 2019. "Feasibility study of an off-grid biomethane mobile solution for agri-waste," Applied Energy, Elsevier, vol. 239(C), pages 471-481.
    21. Soufia Mohammadi & Pilar Monsalvete Álvarez de Uribarri & Ursula Eicker, 2021. "Decentral Energy Generation Potential of Anaerobic Digestion of Black Water and Kitchen Refuse for Eco-District Planning," Energies, MDPI, vol. 14(10), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:agreko:345243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aeasaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.