IDEAS home Printed from https://ideas.repec.org/a/ags/aareaj/229825.html
   My bibliography  Save this article

Production economics in the presence of risk

Author

Listed:
  • Shankar, Sriram

Abstract

This paper provides an overview of the literature on production under the influence of risk. Various specifications of stochastic production function such as models with additive and multiplicative uncertainty, Just and Pope model, output-cubical, stateallocable and state-general models are discussed. Further, criteria determining optimal producer behaviour are derived for deterministic production technology and for various kinds of state-contingent technologies such as output-cubical, state-specific, stateallocable and state-general technologies. Finally, a brief discussion is presented about the drawbacks of each of these specifications of technology.

Suggested Citation

  • Shankar, Sriram, 2012. "Production economics in the presence of risk," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 56(4), pages 1-24, December.
  • Handle: RePEc:ags:aareaj:229825
    DOI: 10.22004/ag.econ.229825
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/229825/files/j.1467-8489.2012.00600.x.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.229825?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chavas, Jean-Paul, 2008. "On the economics of agricultural production," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(4), pages 1-16.
    2. Svend Rasmussen, 2003. "Criteria for optimal production under uncertainty. The state‐contingent approach," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 47(4), pages 447-476, December.
    3. Sandmo, Agnar, 1971. "On the Theory of the Competitive Firm under Price Uncertainty," American Economic Review, American Economic Association, vol. 61(1), pages 65-73, March.
    4. Chambers,Robert G. & Quiggin,John, 2000. "Uncertainty, Production, Choice, and Agency," Cambridge Books, Cambridge University Press, number 9780521622448, September.
    5. Jaramillo, Paul E. & Useche, Pilar & Barham, Bradford L. & Foltz, Jeremy D., 2010. "The State Contingent Approach to Farmers' Valuation and Adoption of New Biotech Crops: Nitrogen-Fertilizer Saving and Drought Tolerance Traits," 2010 Annual Meeting, July 25-27, 2010, Denver, Colorado 61860, Agricultural and Applied Economics Association.
    6. Just, Richard E., 2003. "Risk research in agricultural economics: opportunities and challenges for the next twenty-five years," Agricultural Systems, Elsevier, vol. 75(2-3), pages 123-159.
    7. Yaari, Menahem E., 1969. "Some remarks on measures of risk aversion and on their uses," Journal of Economic Theory, Elsevier, vol. 1(3), pages 315-329, October.
    8. Robert G. Chambers & John Quiggin, 2002. "The State-Contingent Properties of Stochastic Production Functions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(2), pages 513-526.
    9. Rasmussen, Svend, 2004. "Optimizing Production under Uncertainty: Generalisation of the State-Contingent Approach and Comparison of Methods for Empirical Application," Unit of Economics Working Papers 24184, Royal Veterinary and Agricultural University, Food and Resource Economic Institute.
    10. Subal C. Kumbhakar, 2002. "Specification and Estimation of Production Risk, Risk Preferences and Technical Efficiency," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(1), pages 8-22.
    11. Robert G. Chambers & John Quiggin, 1998. "Cost Functions and Duality for Stochastic Technologies," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(2), pages 288-295.
    12. H. Alan Love & Steven T. Buccola, 1999. "Joint Risk Preference-Technology Estimation with a Primal System: Reply," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(1), pages 245-247.
    13. H. Alan Love & Steven T. Buccola, 1991. "Joint Risk Preference-Technology Estimation with a Primal System," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 73(3), pages 765-774.
    14. Jean-Paul Chavas, 2008. "A Cost Approach to Economic Analysis Under State-Contingent Production Uncertainty," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(2), pages 435-466.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomasz Gerard Czekaj & Arne Henningsen, 2013. "Panel Data Nonparametric Estimation of Production Risk and Risk Preferences: An Application to Polish Dairy Farms," IFRO Working Paper 2013/6, University of Copenhagen, Department of Food and Resource Economics.
    2. Raushan Bokusheva & Lajos Baráth, 2024. "State‐contingent production technology formulation: Identifying states of nature using reduced‐form econometric models of crop yield," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(2), pages 805-827, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Just, Richard E. & Just, David R., 2011. "Global identification of risk preferences with revealed preference data," Journal of Econometrics, Elsevier, vol. 162(1), pages 6-17, May.
    2. Sriram Shankar, 2015. "Efficiency analysis under uncertainty: a simulation study," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(2), pages 171-188, April.
    3. Hardaker, J. Brian & Lien, Gudbrand, 2010. "Probabilities for decision analysis in agriculture and rural resource economics: The need for a paradigm change," Agricultural Systems, Elsevier, vol. 103(6), pages 345-350, July.
    4. Sriram Shankar & John Quiggin, 2013. "Production under uncertainty: a simulation study," Journal of Productivity Analysis, Springer, vol. 39(3), pages 207-215, June.
    5. John Quiggin & Robert G. Chambers, 2004. "Drought policy: a graphical analysis," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 48(2), pages 225-251, June.
    6. Yin, Pengzhen & Sun, Jiasen & Chu, Junfei & Liang, Liang, 2016. "Evaluating the environmental efficiency of a two-stage system with undesired outputs by a DEA approach: An interest preference perspectiveAuthor-Name: Wu, Jie," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1047-1062.
    7. Huettel, Silke & Narayana, Rashmi & Odening, Martin, 2011. "Measuring dynamic efficiency under uncertainty," Structural Change in Agriculture/Strukturwandel im Agrarsektor (SiAg) Working Papers 129062, Humboldt University Berlin, Department of Agricultural Economics.
    8. Bouali Guesmi & Ahmed Yangui & Ibtissem Taghouti & José Maria Gil, 2022. "Trade-Off between Land Use Pattern and Technical Efficiency Performance: Evidence from Arable Crop Farming in Tunisia," Land, MDPI, vol. 12(1), pages 1-13, December.
    9. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    10. Serra, Teresa & Chambers, Robert G. & Oude Lansink, Alfons, 2014. "Measuring technical and environmental efficiency in a state-contingent technology," European Journal of Operational Research, Elsevier, vol. 236(2), pages 706-717.
    11. Shankar, Sriram, 2013. "Firm behaviour under uncertainty: a simple parametric model," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 57(1), pages 1-11.
    12. Jesse B. Tack & Rulon D. Pope & Jeffrey T. LaFrance & Ricardo H. Cavazos, 2015. "Modelling an aggregate agricultural panel with application to US farm input demands," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 42(3), pages 371-396.
    13. Céline Nauges & Christopher J. O'Donnell & John Quiggin, 2011. "Uncertainty and technical efficiency in Finnish agriculture: a state-contingent approach," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 38(4), pages 449-467, October.
    14. Nauges, Celine & O'Donnell, Christopher J. & Quiggin, John C., 2009. "Uncertainty and technical efficiency in Finnish Agriculture," 2009 Conference (53rd), February 11-13, 2009, Cairns, Australia 48062, Australian Agricultural and Resource Economics Society.
    15. Quiggin, John & Chambers, Robert G., 2005. "The state-contingent approach to production and uncertainty," Risk and Sustainable Management Group Working Papers 151168, University of Queensland, School of Economics.
    16. Tomasz Gerard Czekaj & Arne Henningsen, 2013. "Panel Data Nonparametric Estimation of Production Risk and Risk Preferences: An Application to Polish Dairy Farms," IFRO Working Paper 2013/6, University of Copenhagen, Department of Food and Resource Economics.
    17. Pedro Macedo & Elvira Silva & Manuel Scotto, 2014. "Technical efficiency with state-contingent production frontiers using maximum entropy estimators," Journal of Productivity Analysis, Springer, vol. 41(1), pages 131-140, February.
    18. Serra, Teresa & Oude Lansink, Alfons, 2014. "Measuring the impacts of production risk on technical efficiency: A state-contingent conditional order-m approach," European Journal of Operational Research, Elsevier, vol. 239(1), pages 237-242.
    19. Moro, Daniele & Sckokai, Paolo, 2013. "The impact of decoupled payments on farm choices: Conceptual and methodological challenges," Food Policy, Elsevier, vol. 41(C), pages 28-38.
    20. Adamson, David, 2010. "Climate change, Irrigation and Pests: Examining Heliothis in the Murray Darling Basin," Risk and Sustainable Management Group Working Papers 149879, University of Queensland, School of Economics.

    More about this item

    Keywords

    Production Economics; Risk and Uncertainty;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aareaj:229825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaresea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.