IDEAS home Printed from https://ideas.repec.org/a/aes/infoec/v27y2023i4p5-15.html
   My bibliography  Save this article

A SWOT Analysis of the Role of Artificial Intelligence in Project Management

Author

Listed:
  • Claudiu BRANDAS
  • Otniel DIDRAGA
  • Andrei ALBU

Abstract

Projects are critical to the success of organizations, and therefore improving project management (PM) is imperative. Artificial intelligence (AI) has revolutionized PM, especially in certain key sectors of the economy. This scientific paper explores the role of AI in PM, focusing on the health, energy, and education sectors. Also, the paper presents an analysis of literature and specialized practice to determine strengths, weaknesses, opportunities, and threats regarding AI in PM through the SWOT analysis method. We highlighted the recent advances in AI and the challenges and opportunities presented by using this technology in PM. The study looks at AI's current and future applications in the mentioned sectors. It provides examples of observed benefits, including reduced project duration, cost savings, and increased project success rates. It also emphasizes the impact of AI in the lifecycle of project managers and discusses job replacement concerns. Our findings highlight the potential of AI to bring significant improvements in PM but emphasize the importance of human communication and collaboration in specific fields, such as the healthcare industry. Given the transition to renewable energy sources, it also highlights the need for an adaptable and data-driven approach to energy sector PM.

Suggested Citation

  • Claudiu BRANDAS & Otniel DIDRAGA & Andrei ALBU, 2023. "A SWOT Analysis of the Role of Artificial Intelligence in Project Management," Informatica Economica, Academy of Economic Studies - Bucharest, Romania, vol. 27(4), pages 5-15.
  • Handle: RePEc:aes:infoec:v:27:y:2023:i:4:p:5-15
    as

    Download full text from publisher

    File URL: https://revistaie.ase.ro/content/108/01%20-%20brandas,%20didraga,%20albu.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khokhar, Suhail & Mohd Zin, Abdullah Asuhaimi B. & Mokhtar, Ahmad Safawi B. & Pesaran, Mahmoud, 2015. "A comprehensive overview on signal processing and artificial intelligence techniques applications in classification of power quality disturbances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1650-1663.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dash, P.K. & Prasad, Eluri N.V.D.V. & Jalli, Ravi Kumar & Mishra, S.P., 2022. "Multiple power quality disturbances analysis in photovoltaic integrated direct current microgrid using adaptive morphological filter with deep learning algorithm," Applied Energy, Elsevier, vol. 309(C).
    2. Matej Žnidarec & Zvonimir Klaić & Damir Šljivac & Boris Dumnić, 2019. "Harmonic Distortion Prediction Model of a Grid-Tie Photovoltaic Inverter Using an Artificial Neural Network," Energies, MDPI, vol. 12(5), pages 1-19, February.
    3. Igual, R. & Medrano, C., 2020. "Research challenges in real-time classification of power quality disturbances applicable to microgrids: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    4. Majidi Nezhad, Meysam & Neshat, Mehdi & Piras, Giuseppe & Astiaso Garcia, Davide, 2022. "Sites exploring prioritisation of offshore wind energy potential and mapping for wind farms installation: Iranian islands case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Francisco G. Montoya & Raul Baños & Alfredo Alcayde & Maria G. Montoya & Francisco Manzano-Agugliaro, 2018. "Power Quality: Scientific Collaboration Networks and Research Trends," Energies, MDPI, vol. 11(8), pages 1-16, August.
    6. Misael Lopez-Ramirez & Luis Ledesma-Carrillo & Eduardo Cabal-Yepez & Carlos Rodriguez-Donate & Homero Miranda-Vidales & Arturo Garcia-Perez, 2016. "EMD-Based Feature Extraction for Power Quality Disturbance Classification Using Moments," Energies, MDPI, vol. 9(7), pages 1-15, July.
    7. Shao, Han & Henriques, Rui & Morais, Hugo & Tedeschi, Elisabetta, 2024. "Power quality monitoring in electric grid integrating offshore wind energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    8. Md Shafiullah & M. A. Abido & Taher Abdel-Fattah, 2018. "Distribution Grids Fault Location employing ST based Optimized Machine Learning Approach," Energies, MDPI, vol. 11(9), pages 1-23, September.
    9. Eslami, Ahmadreza & Negnevitsky, Michael & Franklin, Evan & Lyden, Sarah, 2022. "Review of AI applications in harmonic analysis in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    10. Zakarya Oubrahim & Yassine Amirat & Mohamed Benbouzid & Mohammed Ouassaid, 2023. "Power Quality Disturbances Characterization Using Signal Processing and Pattern Recognition Techniques: A Comprehensive Review," Energies, MDPI, vol. 16(6), pages 1-41, March.
    11. Boza, Pal & Evgeniou, Theodoros, 2021. "Artificial intelligence to support the integration of variable renewable energy sources to the power system," Applied Energy, Elsevier, vol. 290(C).
    12. Yassine Amirat & Zakarya Oubrahim & Hafiz Ahmed & Mohamed Benbouzid & Tianzhen Wang, 2020. "Phasor Estimation for Grid Power Monitoring: Least Square vs. Linear Kalman Filter," Energies, MDPI, vol. 13(10), pages 1-15, May.
    13. Samet, Haidar, 2016. "Evaluation of digital metering methods used in protection and reactive power compensation of micro-grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 260-279.
    14. Xin Liu & Bangxin Zhao & Wenqing He, 2020. "Simultaneous Feature Selection and Classification for Data-Adaptive Kernel-Penalized SVM," Mathematics, MDPI, vol. 8(10), pages 1-22, October.
    15. Radovan Turović & Dinu Dragan & Gorana Gojić & Veljko B. Petrović & Dušan B. Gajić & Aleksandar M. Stanisavljević & Vladimir A. Katić, 2022. "An End-to-End Deep Learning Method for Voltage Sag Classification," Energies, MDPI, vol. 15(8), pages 1-22, April.
    16. Saidatul Habsah Asman & Nur Fadilah Ab Aziz & Ungku Anisa Ungku Amirulddin & Mohd Zainal Abidin Ab Kadir, 2021. "Transient Fault Detection and Location in Power Distribution Network: A Review of Current Practices and Challenges in Malaysia," Energies, MDPI, vol. 14(11), pages 1-37, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aes:infoec:v:27:y:2023:i:4:p:5-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Paul Pocatilu (email available below). General contact details of provider: https://edirc.repec.org/data/aseeero.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.