IDEAS home Printed from https://ideas.repec.org/a/aen/journl/ej38-1-linzhang.html
   My bibliography  Save this article

Nuclear Phase-out Under Stringent Climate Policies: A Dynamic Macroeconomic Analysis

Author

Listed:
  • Lucas Bretschger and Lin Zhang

Abstract

In this paper we investigate the long-run economic consequences of phasing out nuclear energy in the presence of stringent climate policies. We integrate endogenous growth theory and technology-based activity analysis into a dynamic numerical general equilibrium model. Both market-based and policy-mandated nuclear phase-out are studied. Using data from the Swiss economy we find that the aggregate welfare loss of carbon policy is as large as 1.21% and that nuclear phase-out raises the loss to 1.58%. Nuclear phase-out has no significant effect on economic growth. Increased investment, induced innovation, and sectoral change are the reasons that the economic impact of nuclear phase-out and the trade-off between energy and climate policy are moderate, once the dynamics of an economy are taken into account. Optimal phase-out time for nuclear depends mainly on future cost escalation in the energy sector.

Suggested Citation

  • Lucas Bretschger and Lin Zhang, 2017. "Nuclear Phase-out Under Stringent Climate Policies: A Dynamic Macroeconomic Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
  • Handle: RePEc:aen:journl:ej38-1-linzhang
    as

    Download full text from publisher

    File URL: http://www.iaee.org/en/publications/ejarticle.aspx?id=2856
    Download Restriction: Access to full text is restricted to IAEE members and subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gerlagh, Reyer & van der Zwaan, Bob, 2003. "Gross world product and consumption in a global warming model with endogenous technological change," Resource and Energy Economics, Elsevier, vol. 25(1), pages 35-57, February.
    2. Adriana Marcucci Bustos & Hal Turton, 2012. "Swiss Energy Strategies under Global Climate Change and Nuclear Policy Uncertainty," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 148(II), pages 317-345, June.
    3. Goulder, Lawrence H. & Schneider, Stephen H., 1999. "Induced technological change and the attractiveness of CO2 abatement policies," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 211-253, August.
    4. Bretschger, Lucas, 2013. "Climate policy and equity principles: fair burden sharing in a dynamic world," Environment and Development Economics, Cambridge University Press, vol. 18(5), pages 517-536, October.
    5. Bretschger, Lucas & Ramer, Roger & Schwark, Florentine, 2011. "Growth effects of carbon policies: Applying a fully dynamic CGE model with heterogeneous capital," Resource and Energy Economics, Elsevier, vol. 33(4), pages 963-980.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alena Miftakhova & Clément Renoir, 2021. "Economic Growth and Equity in Anticipation of Climate Policy," CER-ETH Economics working paper series 21/355, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    2. Lucas Bretschger & Matthias Leuthard & Alena Miftakhova, 2024. "Boosting Sluggish Climate Policy: Endogenous Substitution, Learning, and Energy Efficiency Improvements," CER-ETH Economics working paper series 24/391, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    3. Hana Kim & Eui-Chan Jeon, 2020. "Structural Changes to Nuclear Energy Industries and the Economic Effects Resulting from Energy Transition Policies in South Korea," Energies, MDPI, vol. 13(7), pages 1-17, April.
    4. Rausch, Sebastian & Zhang, Da, 2018. "Capturing natural resource heterogeneity in top-down energy-economic equilibrium models," Energy Economics, Elsevier, vol. 74(C), pages 917-926.
    5. Adriana Marcucci & Lin Zhang, 2019. "Growth impacts of Swiss steering-based climate policies," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 155(1), pages 1-13, December.
    6. Cámara, Ángeles & Martínez, M.ª Isabel & Rodríguez, Leila, 2018. "El impacto económico del desmantelamiento nuclear en España || The Economic Impact of Nuclear Dismantlement in Spain," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 25(1), pages 244-271, Junio.
    7. Karydas, Christos & Zhang, Lin, 2019. "Green tax reform, endogenous innovation and the growth dividend," Journal of Environmental Economics and Management, Elsevier, vol. 97(C), pages 158-181.
    8. Hsiao, Cody Yu-Ling & Chen, Hsing Hung, 2018. "The contagious effects on economic development after resuming construction policy for nuclear power plants in Coastal China," Energy, Elsevier, vol. 152(C), pages 291-302.
    9. Kan, Xiaoming & Hedenus, Fredrik & Reichenberg, Lina, 2020. "The cost of a future low-carbon electricity system without nuclear power – the case of Sweden," Energy, Elsevier, vol. 195(C).
    10. Panos, Evangelos & Kober, Tom & Wokaun, Alexander, 2019. "Long term evaluation of electric storage technologies vs alternative flexibility options for the Swiss energy system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    11. Sophie Maire & Philippe Thalmann & Frank Vöhringer, 2019. "Welfare effects of technology-based climate policies in liberalized electricity markets: seeing beyond total system cost," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 155(1), pages 1-12, December.
    12. Florian Landis & Adriana Marcucci & Sebastian Rausch & Ramachandran Kannan & Lucas Bretschger, 2019. "Multi-model comparison of Swiss decarbonization scenarios," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 155(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucas Bretschger & Lin Zhang & Roger Ramer, 2012. "Economic effects of a nuclear-phase out policy: A CGE analysis," CER-ETH Economics working paper series 12/167, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    2. Karydas, Christos & Zhang, Lin, 2019. "Green tax reform, endogenous innovation and the growth dividend," Journal of Environmental Economics and Management, Elsevier, vol. 97(C), pages 158-181.
    3. Bretschger, Lucas & Lechthaler, Filippo & Rausch, Sebastian & Zhang, Lin, 2017. "Knowledge diffusion, endogenous growth, and the costs of global climate policy," European Economic Review, Elsevier, vol. 93(C), pages 47-72.
    4. Gerlagh, Reyer, 2007. "Measuring the value of induced technological change," Energy Policy, Elsevier, vol. 35(11), pages 5287-5297, November.
    5. Bob van der Zwaan & Reyer Gerlagh, 2004. "Climate Uncertainty and the Necessity to Transform Global Energy Supply," Working Papers 2004.95, Fondazione Eni Enrico Mattei.
    6. Christoph Heinzel & Ralph Winkler, 2011. "Distorted Time Preferences and Time-to-Build in the Transition to a Low-Carbon Energy Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 49(2), pages 217-241, June.
    7. Taran Faehn and Elisabeth T. Isaksen, 2016. "Diffusion of Climate Technologies in the Presence of Commitment Problems," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    8. Carraro, Carlo & Gerlagh, Reyer & Zwaan, Bob van der, 2003. "Endogenous technical change in environmental macroeconomics," Resource and Energy Economics, Elsevier, vol. 25(1), pages 1-10, February.
    9. Gerlagh, Reyer & Lise, Wietze, 2005. "Carbon taxes: A drop in the ocean, or a drop that erodes the stone? The effect of carbon taxes on technological change," Ecological Economics, Elsevier, vol. 54(2-3), pages 241-260, August.
    10. Baker, Erin & Clarke, Leon & Shittu, Ekundayo, 2008. "Technical change and the marginal cost of abatement," Energy Economics, Elsevier, vol. 30(6), pages 2799-2816, November.
    11. Taran Faehn & Gabriel Bachner & Robert Beach & Jean Chateau & Shinichiro Fujimori & Madanmohan Ghosh & Meriem Hamdi-Cherif & Elisa Lanzi & Sergey Paltsev & Toon Vandyck & Bruno Cunha & Rafael Garaffa , 2020. "Capturing Key Energy and Emission Trends in CGE models: Assessment of Status and Remaining Challenges," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 196-272, June.
    12. Peterson, Sonja, 2005. "Technischer Fortschritt im DART-Modell," Open Access Publications from Kiel Institute for the World Economy 3806, Kiel Institute for the World Economy (IfW Kiel).
    13. Jonathon M. Becker & Jared C. Carbone & Andreas Loeschel, 2022. "Induced Innovation and Carbon Leakage," Working Papers 2022-04, Colorado School of Mines, Division of Economics and Business.
    14. Lucas Bretschger, 2018. "Greening Economy, Graying Society," CER-ETH Press, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich, edition 2, number 18-001.
    15. Kemfert, Claudia, 2005. "Induced technological change in a multi-regional, multi-sectoral, integrated assessment model (WIAGEM): Impact assessment of climate policy strategies," Ecological Economics, Elsevier, vol. 54(2-3), pages 293-305, August.
    16. Gerlagh, Reyer, 2008. "A climate-change policy induced shift from innovations in carbon-energy production to carbon-energy savings," Energy Economics, Elsevier, vol. 30(2), pages 425-448, March.
    17. Carraro, Carlo & De Cian, Enrica & Nicita, Lea & Massetti, Emanuele & Verdolini, Elena, 2010. "Environmental Policy and Technical Change: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 4(2), pages 163-219, October.
    18. Kemfert, Claudia & Truong, Truong, 2007. "Impact assessment of emissions stabilization scenarios with and without induced technological change," Energy Policy, Elsevier, vol. 35(11), pages 5337-5345, November.
    19. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    20. Steve Sorrell, 2014. "Energy Substitution, Technical Change and Rebound Effects," Energies, MDPI, vol. 7(5), pages 1-24, April.

    More about this item

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aen:journl:ej38-1-linzhang. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Williams (email available below). General contact details of provider: https://edirc.repec.org/data/iaeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.