IDEAS home Printed from https://ideas.repec.org/a/adx/journl/v4y2022i2p115-123.html
   My bibliography  Save this article

Factors Influencing Water Saving Measures and Water-Use Efficiency of Wheat Growers in Sindh, Pakistan

Author

Listed:
  • Akbar Khan Khajjak
  • Tehmina Mangan

Abstract

As the food supplies will have to be increased according to the growing population, water demand will be on the rise in the future. Therefore, improved water consumption patterns must be followed to match future food demands. The paper analyzes the farmer’s adoption of improved irrigation technology to avoid excessive irrigation water use in cultivating crops. In addition, this paper also investigated the factors influencing the water-use efficiency of the farmers. A total of 390 farmers who grew wheat crops were selected from the Naushahro Feroz and Benazirabad districts of Sindh, Pakistan. Socio-economic variables and efficiency scores of the respondents were taken as variables, and both binomial logistic and Tobit regression models were applied. Results indicated that household head’s experience and formal education have a positive and significant impact on their decision to adopt improved irrigation and their efficiency scores. The elasticities reveal that a 1 % increase in experience of farming possesses the probability of lining the water courses by 23%. Whereas, with the change of 1% in the formal education of respondents, the tendency to laser land leveling changed by 0.1%. In comparison, the distance of the farm from the canal and the area of the farm bears a negative impact on water conserving measures opted by them and their water-use efficiency scores. It was found that proper lining of the water courses, usage of drought tolerant varieties of crops, irrigation technology adoption, and laser land leveling were the measures taken to avoid the excessive use of irrigation water. These measures were found to significantly impact the water-use efficiency scores of sampled farmers. These findings might be helpful for researchers and policymakers to realize such factors influencing the adoption of farmers and their farm efficiency.

Suggested Citation

  • Akbar Khan Khajjak & Tehmina Mangan, 2022. "Factors Influencing Water Saving Measures and Water-Use Efficiency of Wheat Growers in Sindh, Pakistan," Journal of Economic Impact, Science Impact Publishers, vol. 4(2), pages 115-123.
  • Handle: RePEc:adx:journl:v:4:y:2022:i:2:p:115-123
    DOI: 10.52223/jei4022214
    as

    Download full text from publisher

    File URL: https://doi.org/10.52223/jei4022214
    Download Restriction: no

    File URL: https://libkey.io/10.52223/jei4022214?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sobia Asghar & Nophea Sasaki & Damien Jourdain & Takuji W. Tsusaka, 2018. "Levels of Technical, Allocative, and Groundwater Use Efficiency and the Factors Affecting the Allocative Efficiency of Wheat Farmers in Pakistan," Sustainability, MDPI, vol. 10(5), pages 1-22, May.
    2. de Fraiture, Charlotte & Wichelns, Dennis, 2010. "Satisfying future water demands for agriculture," Agricultural Water Management, Elsevier, vol. 97(4), pages 502-511, April.
    3. Deng, Xi-Ping & Shan, Lun & Zhang, Heping & Turner, Neil C., 2006. "Improving agricultural water use efficiency in arid and semiarid areas of China," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 23-40, February.
    4. Phoebe Koundouri & Céline Nauges & Vangelis Tzouvelekas, 2006. "Technology Adoption under Production Uncertainty: Theory and Application to Irrigation Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(3), pages 657-670.
    5. Deressa, Temesgen Tadesse & Ringler, Claudia & Hassan, Rashid M., 2010. "Factors affecting the choices of coping strategies for climate extremes: The case of farmers in the Nile Basin of Ethiopia," IFPRI discussion papers 1032, International Food Policy Research Institute (IFPRI).
    6. Muhammad Ali Imran & Asghar Ali & Muhammad Ashfaq & Sarfraz Hassan & Richard Culas & Chunbo Ma, 2018. "Impact of Climate Smart Agriculture (CSA) Practices on Cotton Production and Livelihood of Farmers in Punjab, Pakistan," Sustainability, MDPI, vol. 10(6), pages 1-20, June.
    7. Rouzaneh, Davoud & Yazdanpanah, Masoud & Jahromi, Arman Bakhshi, 2021. "Evaluating micro-irrigation system performance through assessment of farmers' satisfaction: implications for adoption, longevity, and water use efficiency," Agricultural Water Management, Elsevier, vol. 246(C).
    8. Garb, Yaakov & Friedlander, Lonia, 2014. "From transfer to translation: Using systemic understandings of technology to understand drip irrigation uptake," Agricultural Systems, Elsevier, vol. 128(C), pages 13-24.
    9. Singh, Dalbir, 2002. "Groundwater Markets in Fragile Environments: Key Issues in Sustainability," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 57(2), June.
    10. Muhammad Rizwan & Ping Qing & Abdul Saboor & Muhammad Amjed Iqbal & Adnan Nazir, 2020. "Production Risk and Competency among Categorized Rice Peasants: Cross-Sectional Evidence from an Emerging Country," Sustainability, MDPI, vol. 12(9), pages 1-15, May.
    11. Shiferaw, Bekele & Holden, Stein, 1999. "Soil Erosion and Smallholders' Conservation Decisions in the Highlands of Ethiopia," World Development, Elsevier, vol. 27(4), pages 739-752, April.
    12. Sokvibol Kea & Hua Li & Linvolak Pich, 2016. "Technical Efficiency and Its Determinants of Rice Production in Cambodia," Economies, MDPI, vol. 4(4), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhamad Zahid Muhamad & Mad Nasir Shamsudin & Nitty Hirawaty Kamarulzaman & Nolila Mohd Nawi & Jamaliah Laham, 2022. "Investigating Yield Variability and Technical Efficiency of Smallholders Pineapple Production in Johor," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    2. Imran, Muhammad Ali & Ali, Asghar & Ashfaq, Muhammad & Hassan, Sarfraz & Culas, Richard & Ma, Chunbo, 2019. "Impact of climate smart agriculture (CSA) through sustainable irrigation management on Resource use efficiency: A sustainable production alternative for cotton," Land Use Policy, Elsevier, vol. 88(C).
    3. Maurice Ogada & Germano Mwabu & Diana Muchai, 2014. "Farm technology adoption in Kenya: a simultaneous estimation of inorganic fertilizer and improved maize variety adoption decisions," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 2(1), pages 1-18, December.
    4. Ruchie Pathak & Nicholas R. Magliocca, 2022. "Assessing the Representativeness of Irrigation Adoption Studies: A Meta-Study of Global Research," Agriculture, MDPI, vol. 12(12), pages 1-31, December.
    5. Yongsheng Wang & Xiao Cui & Xinrong Zhang & Qi Wen, 2022. "Exploring the Sustainable Use Strategy of Scarce Water Resources for Rural Revitalization in Yanchi County from Arid Region of Northwest China," IJERPH, MDPI, vol. 19(23), pages 1-13, December.
    6. Jamil, Ihsan & Jun, Wen & Mughal, Bushra & Waheed, Junaid & Hussain, Hadi & Waseem, Muhammad, 2021. "Agricultural Innovation: A comparative analysis of economic benefits gained by farmers under climate resilient and conventional agricultural practices," Land Use Policy, Elsevier, vol. 108(C).
    7. Akbar Khan Khajjak & Tehmina Mangan & Habibullah Magsi & Aijaz Ali Khooharo, 2022. "Exploring the Inefficient Groundwater Use by Wheat Farmers: An Evidence from Sindh, Pakistan," Journal of Economic Impact, Science Impact Publishers, vol. 4(2), pages 22-31.
    8. Yongfeng Tan & Apurbo Sarkar & Airin Rahman & Lu Qian & Waqar Hussain Memon & Zharkyn Magzhan, 2021. "Does External Shock Influence Farmer’s Adoption of Modern Irrigation Technology?—A Case of Gansu Province, China," Land, MDPI, vol. 10(8), pages 1-16, August.
    9. Zheng, Huifang & Shao, Ruixin & Xue, Yanfang & Ying, Hao & Yin, Yulong & Cui, Zhenling & Yang, QingHua, 2020. "Water productivity of irrigated maize production systems in Northern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 234(C).
    10. Vermunt, D.A. & Wojtynia, N. & Hekkert, M.P. & Van Dijk, J. & Verburg, R. & Verweij, P.A. & Wassen, M. & Runhaar, H., 2022. "Five mechanisms blocking the transition towards ‘nature-inclusive’ agriculture: A systemic analysis of Dutch dairy farming," Agricultural Systems, Elsevier, vol. 195(C).
    11. Meredith Niles & Margaret Brown & Robyn Dynes, 2016. "Farmer’s intended and actual adoption of climate change mitigation and adaptation strategies," Climatic Change, Springer, vol. 135(2), pages 277-295, March.
    12. Mohamed Ayadi & Wided Mattoussi, 2014. "From Productivity to Exporting or Vice Versa? Evidence from Tunisian Manufacturing Sector," Working Papers 852, Economic Research Forum, revised Nov 2014.
    13. Pronti, Andrea & Auci, Sabrina & Berbel, Julio, 2024. "Water conservation and saving technologies for irrigation. A structured literature review of econometric studies on the determinants of adoption," Agricultural Water Management, Elsevier, vol. 299(C).
    14. Alvaro Calzadilla & Katrin Rehdanz & Richard S.J. Tol, 2008. "The Eonomic Impact Of More Sustainable Water Use In Agriculture: A Computable General Equilibrium Analysis," Working Papers FNU-169, Research unit Sustainability and Global Change, Hamburg University, revised Dec 2008.
    15. Giuseppe Maggio & Marina Mastrorillo & Nicholas J. Sitko, 2022. "Adapting to High Temperatures: Effect of Farm Practices and Their Adoption Duration on Total Value of Crop Production in Uganda," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 385-403, January.
    16. Al Zayed, Islam Sabry & Elagib, Nadir Ahmed & Ribbe, Lars & Heinrich, Jürgen, 2016. "Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study," Agricultural Water Management, Elsevier, vol. 177(C), pages 66-76.
    17. Yang, Danni & Li, Sien & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Mao, Xiaomin & Tong, Ling & Hao, Xinmei & Ding, Risheng & Niu, Jun, 2020. "Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    18. Facon, T. & Mukherji, Aditi, 2010. "Small-scale irrigation: is this the future?," Conference Papers h043372, International Water Management Institute.
    19. Belen Gallego-Elvira & Victoriano Martínez-Alvarez & Pamela Pittaway & Gavin Brink & Bernardo Martín-Gorriz, 2013. "Impact of Micrometeorological Conditions on the Efficiency of Artificial Monolayers in Reducing Evaporation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2251-2266, May.
    20. Sauer, Johannes & Zilberman, David, 2009. "Innovation Behaviour At Farm Level – Selection And Identification," 83rd Annual Conference, March 30 - April 1, 2009, Dublin, Ireland 51073, Agricultural Economics Society.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adx:journl:v:4:y:2022:i:2:p:115-123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Iqbal Javed (email available below). General contact details of provider: https://www.scienceimpactpub.com/journals/index.php .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.