IDEAS home Printed from https://ideas.repec.org/a/adp/jbboaj/v5y2018i5p144-145.html
   My bibliography  Save this article

A Review on the Assessment of the Spatial Dependence

Author

Listed:
  • Pilar García Soidán

    (Department of Statistics and Operations Research, University of Vigo, Spain)

Abstract

For intrinsic random processes, an appropriate estimation of the variogram is required to derive accurate predictions, when proceeding through the kriging methodology. The resulting function must satisfy the conditionally negative definiteness condition, both to guarantee a solution for the kriging equation system and to derive a non-negative prediction error. Assessment of the resulting function is typically addressed through graphical tools, which are not necessarily conclusive, thus making it advisable to perform tests to check the adequateness of the fitted variogram.

Suggested Citation

  • Pilar García Soidán, 2018. "A Review on the Assessment of the Spatial Dependence," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 5(5), pages 144-145, March.
  • Handle: RePEc:adp:jbboaj:v:5:y:2018:i:5:p:144-145
    DOI: 10.19080/BBOAJ.2018.05.555672
    as

    Download full text from publisher

    File URL: https://juniperpublishers.com/bboaj/pdf/BBOAJ.MS.ID.555672.pdf
    Download Restriction: no

    File URL: https://juniperpublishers.com/bboaj/BBOAJ.MS.ID.555672.php
    Download Restriction: no

    File URL: https://libkey.io/10.19080/BBOAJ.2018.05.555672?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yongtao Guan & Michael Sherman & James A. Calvin, 2004. "A Nonparametric Test for Spatial Isotropy Using Subsampling," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 810-821, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dyogo Lesniewski Ribeiro & Tamara Cantú Maltauro & Luciana Pagliosa Carvalho Guedes & Miguel Angel Uribe-Opazo & Gustavo Henrique Dalposso, 2024. "Directional Differences in Thematic Maps of Soil Chemical Attributes with Geometric Anisotropy," Stats, MDPI, vol. 7(1), pages 1-14, January.
    2. Soutir Bandyopadhyay & Suhasini Subba Rao, 2017. "A test for stationarity for irregularly spaced spatial data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 95-123, January.
    3. Marco H. Benedetti & Veronica J. Berrocal & Naveen N. Narisetty, 2022. "Identifying regions of inhomogeneities in spatial processes via an M‐RA and mixture priors," Biometrics, The International Biometric Society, vol. 78(2), pages 798-811, June.
    4. Xianyang Zhang & Bo Li & Xiaofeng Shao, 2014. "Self-normalization for Spatial Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 311-324, June.
    5. Yongtao Guan, 2006. "Tests for Independence between Marks and Points of a Marked Point Process," Biometrics, The International Biometric Society, vol. 62(1), pages 126-134, March.
    6. Giuseppe Arbia & Marco Bee & Giuseppe Espa & Flavio Santi, 2014. "Fitting Spatial Econometric Models through the Unilateral Approximation," DEM Discussion Papers 2014/08, Department of Economics and Management.
    7. Yongtao Guan & Michael Sherman & James A. Calvin, 2006. "Assessing Isotropy for Spatial Point Processes," Biometrics, The International Biometric Society, vol. 62(1), pages 119-125, March.
    8. C. Comas & F. J. Rodriguez-Cortes & J. Mateu, 2015. "Second-order analysis of anisotropic spatiotemporal point process data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(1), pages 49-66, February.
    9. Bowman, Adrian W. & Crujeiras, Rosa M., 2013. "Inference for variograms," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 19-31.
    10. Haozhe Zhang & Yehua Li, 2020. "Unified Principal Component Analysis for Sparse and Dense Functional Data under Spatial Dependency," Papers 2006.13489, arXiv.org, revised Jun 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adp:jbboaj:v:5:y:2018:i:5:p:144-145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Robert Thomas (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.