IDEAS home Printed from https://ideas.repec.org/a/adp/jbboaj/v1y2017i2p40-49.html
   My bibliography  Save this article

An Efficient Semiparametric Approach for Marker Gene Selection and Patient Classification

Author

Listed:
  • Jingjing Wu

    (Department of Mathematics and Statistics, University of Calgary, Canada)

  • Guoqiang Chen

    (Enbridge, Canada)

  • Zeny Feng

    (Department of Mathematics and Statistics, University of Guelph, Canada)

Abstract

The advancement of microarray technology has greatly facilitated the research in gene expression based classification of patient samples. For example, in cancer research, microarray gene expression data has been used for cancer or tumor classification. When the study is only focusing on two classes, for example two different cancer types, we propose a two-sample semiparametric model to model the distributions of gene expression level for different classes. To estimate the parameters, we consider both maximum semiparametric likelihood estimate (MLE) and minimum Hellinger distance estimate (MHDE).

Suggested Citation

  • Jingjing Wu & Guoqiang Chen & Zeny Feng, 2017. "An Efficient Semiparametric Approach for Marker Gene Selection and Patient Classification," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 1(2), pages 40-49, April.
  • Handle: RePEc:adp:jbboaj:v:1:y:2017:i:2:p:40-49
    DOI: 10.19080/BBOAJ.2017.01.555558
    as

    Download full text from publisher

    File URL: https://juniperpublishers.com/bboaj/pdf/BBOAJ.MS.ID.555558.pdf
    Download Restriction: no

    File URL: https://juniperpublishers.com/bboaj/BBOAJ.MS.ID.555558.php
    Download Restriction: no

    File URL: https://libkey.io/10.19080/BBOAJ.2017.01.555558?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marine Jeanmougin & Aurelien de Reynies & Laetitia Marisa & Caroline Paccard & Gregory Nuel & Mickael Guedj, 2010. "Should We Abandon the t-Test in the Analysis of Gene Expression Microarray Data: A Comparison of Variance Modeling Strategies," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-9, September.
    2. Wu, Jingjing & Karunamuni, Rohana & Zhang, Biao, 2010. "Minimum Hellinger distance estimation in a two-sample semiparametric model," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1102-1122, May.
    3. Karunamuni, Rohana J. & Wu, Jingjing, 2011. "One-step minimum Hellinger distance estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3148-3164, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingjing Wu & Tasnima Abedin & Qiang Zhao, 2023. "Semiparametric modelling of two-component mixtures with stochastic dominance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(1), pages 39-70, February.
    2. Jingjing Wu & Rohana J. Karunamuni, 2018. "Efficient and robust tests for semiparametric models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(4), pages 761-788, August.
    3. Qingguo Tang & R. J. Karunamuni, 2018. "Robust variable selection for finite mixture regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 489-521, June.
    4. Tang, Qingguo & Karunamuni, Rohana J., 2013. "Minimum distance estimation in a finite mixture regression model," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 185-204.
    5. Wu, Jingjing & Karunamuni, Rohana J., 2012. "Efficient Hellinger distance estimates for semiparametric models," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 1-23.
    6. Wang Chamont & Gevertz Jana L., 2016. "Finding causative genes from high-dimensional data: an appraisal of statistical and machine learning approaches," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(4), pages 321-347, August.
    7. Yayuan Zhu & Jingjing Wu & Xuewen Lu, 2013. "Minimum Hellinger distance estimation for a two-sample semiparametric cure rate model with censored survival data," Computational Statistics, Springer, vol. 28(6), pages 2495-2518, December.
    8. Zhang, Archer Gong & Chen, Jiahua, 2022. "Density ratio model with data-adaptive basis function," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    9. Karunamuni, Rohana J. & Tang, Qingguo & Zhao, Bangxin, 2015. "Robust and efficient estimation of effective dose," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 47-60.
    10. Karunamuni, Rohana J. & Wu, Jingjing, 2011. "One-step minimum Hellinger distance estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3148-3164, December.
    11. Martin, Manon & Govaerts, Bernadette, 2019. "Feature Selection in metabolomics with PLS-derived methods," LIDAM Discussion Papers ISBA 2019020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adp:jbboaj:v:1:y:2017:i:2:p:40-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Robert Thomas (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.