IDEAS home Printed from https://ideas.repec.org/a/adm/journl/v8y2019i6p51-73.html
   My bibliography  Save this article

From Superficial Damage to Invasion of the Nucleosome: Ranking of Morbidities by the Biosemiotic Depth Hypothesis

Author

Listed:
  • John W. Oller
  • Christopher A. Shaw

Abstract

At their most abstract level, according to a certain generalized paradigm in biosemiotic philosophy grounded in well-established mathematical proofs, valid communications from molecules upward must be formally isomorphic to the dynamic true narrative representations (TNRs) of natural language systems that vest those meaningful signs with their functional (pragmatic) content. TNRs, in DNA, RNA, proteins, and higher constructions, therefore, are requisite to health in the individual, in interactions with the larger environment, and with other organisms. In homo sapiens, the generalized biosemiotic paradigm proves that morbidities in general must always, in some manner, involve degradation of internal and external communications through TNRs in DNA, RNA, protein language, organelles, cells, tissues, and organ systems. The mathematically grounded paradigm shows that any given TNR can be superveniently degenerated, by very coarse or very fine degrees, to many distinct fictions, errors, lies, and nonsense strings out to the absolute limit of a complete erasure. The depth hypothesis asserts that if the timing and breadth of any degenerative disruption can be held equal, in fact or in principle, the depth of penetration of any disruptive factor into biosignaling representations must in theory be pathognomonic of severity in the supervened morbidities. From meiosis through conception to maturity, ceteris paribus, corruptions deeper in the developmental hierarchy must be more harmful in the morbidities they supervene. The depth hypothesis suggests a differentiation of autoimmune disorders as deeper than allergies, but less so than prion diseases, tumorigenesis, and metastatic cancers in that order. It suggests, therefore, a potentially useful generalized ranking of morbidities.

Suggested Citation

  • John W. Oller & Christopher A. Shaw, 2019. "From Superficial Damage to Invasion of the Nucleosome: Ranking of Morbidities by the Biosemiotic Depth Hypothesis," International Journal of Sciences, Office ijSciences, vol. 8(06), pages 51-73, June.
  • Handle: RePEc:adm:journl:v:8:y:2019:i:6:p:51-73
    DOI: 10.18483/ijSci.2069
    as

    Download full text from publisher

    File URL: https://www.ijsciences.com/pub/article/2069
    Download Restriction: no

    File URL: https://www.ijsciences.com/pub/pdf/V82019062069.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.18483/ijSci.2069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liam P. Cheeseman & Jérôme Boulanger & Lisa M. Bond & Melina Schuh, 2016. "Two pathways regulate cortical granule translocation to prevent polyspermy in mouse oocytes," Nature Communications, Nature, vol. 7(1), pages 1-13, December.
    2. Wiggins, Philippa M, 2002. "Water in complex environments such as living systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 485-491.
    3. Uchendu, U.S. & Omalu, B.I. & Cifu, D.X. & Egede, L.E., 2016. "Repeated concussions: Time to spur action among vulnerable veterans," American Journal of Public Health, American Public Health Association, vol. 106(8), pages 1366-1368.
    4. Rahul M. Kohli & Yi Zhang, 2013. "TET enzymes, TDG and the dynamics of DNA demethylation," Nature, Nature, vol. 502(7472), pages 472-479, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steffen Mueller & Gail Dennison & Shujun Liu, 2021. "An Assessment on Ethanol-Blended Gasoline/Diesel Fuels on Cancer Risk and Mortality," IJERPH, MDPI, vol. 18(13), pages 1-23, June.
    2. Amadou Gaye & Gary H Gibbons & Charles Barry & Rakale Quarells & Sharon K Davis, 2017. "Influence of socioeconomic status on the whole blood transcriptome in African Americans," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-15, December.
    3. Liu Yang & San-Jian Yu & Qi Hong & Yu Yang & Zhi-Ming Shao, 2015. "Reduced Expression of TET1, TET2, TET3 and TDG mRNAs Are Associated with Poor Prognosis of Patients with Early Breast Cancer," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-10, July.
    4. Qing Li & Jiansen Lu & Xidi Yin & Yunjian Chang & Chao Wang & Meng Yan & Li Feng & Yanbo Cheng & Yun Gao & Beiying Xu & Yao Zhang & Yingyi Wang & Guizhong Cui & Luang Xu & Yidi Sun & Rong Zeng & Yixue, 2023. "Base editing-mediated one-step inactivation of the Dnmt gene family reveals critical roles of DNA methylation during mouse gastrulation," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Jiří Kudrna & Marek Popov & František Hnilička & Marie Lhotská & Veronika Zemanová & Pavla Vachová & Jan Kubeš & Jana Česká & Barbora Tunklová, 2023. "Effects of Acetaminophen Contamination on 5-Methylcytosine Content in Zea mays and Plant Physiological Parameters," Agriculture, MDPI, vol. 13(7), pages 1-12, June.
    6. Simon D. Schwarz & Jianming Xu & Kapila Gunasekera & David Schürmann & Cathrine B. Vågbø & Elena Ferrari & Geir Slupphaug & Michael O. Hottiger & Primo Schär & Roland Steinacher, 2024. "Covalent PARylation of DNA base excision repair proteins regulates DNA demethylation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Allegra Angeloni & Skye Fissette & Deniz Kaya & Jillian M. Hammond & Hasindu Gamaarachchi & Ira W. Deveson & Robert J. Klose & Weiming Li & Xiaotian Zhang & Ozren Bogdanovic, 2024. "Extensive DNA methylome rearrangement during early lamprey embryogenesis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Yidong Song & Qianmu Yuan & Sheng Chen & Yuansong Zeng & Huiying Zhao & Yuedong Yang, 2024. "Accurately predicting enzyme functions through geometric graph learning on ESMFold-predicted structures," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Letizia Pitto & Francesca Gorini & Fabrizio Bianchi & Elena Guzzolino, 2020. "New Insights into Mechanisms of Endocrine-Disrupting Chemicals in Thyroid Diseases: The Epigenetic Way," IJERPH, MDPI, vol. 17(21), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adm:journl:v:8:y:2019:i:6:p:51-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Staff ijSciences (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.