IDEAS home Printed from https://ideas.repec.org/a/adm/journl/v8y2019i5p99-105.html
   My bibliography  Save this article

Histological Alterations in the Gills, Skin and Liver of Adult Nile Tilapia, Oreochromis niloticus (Linnaeus I779) Exposed to Jatropha Curcas Seed Powder

Author

Listed:
  • I. C. Adene

Abstract

Adult Nile Tiapia, Oreochromis niloticus was exposed to Jatropha curcas seed powder, a multipurpose plant used for demarcation, boundaries and the seeds for biodiesel and traditional medication. The histological alteration of the gill, skin and liver were studied at sub-lethal concentration of 133.3,200, 266.7, 333.3, 400 and 0 as control. The pathological lesions observed on the gill are Lamella degeneration, Hyperthrophy of the gill arc and severe necrosis of gill filament, Submucosal Congestion, Severe erosion of the secondary lamellae and cartilage at the base. The lesions on the skin are necrosis, dermal cell erosion and cellular infiltration by mononuclear cells. In the liver, moderate degeneration of periportal, diffuse vacuolation of hepatocytes and congested portal area were observed. The alteration on each of the organ became severe with increase in concentration of Jatropha curcas seed powder.

Suggested Citation

  • I. C. Adene, 2019. "Histological Alterations in the Gills, Skin and Liver of Adult Nile Tilapia, Oreochromis niloticus (Linnaeus I779) Exposed to Jatropha Curcas Seed Powder," International Journal of Sciences, Office ijSciences, vol. 8(05), pages 99-105, May.
  • Handle: RePEc:adm:journl:v:8:y:2019:i:5:p:99-105
    DOI: 10.18483/ijSci.1897
    as

    Download full text from publisher

    File URL: https://www.ijsciences.com/pub/article/1897
    Download Restriction: no

    File URL: https://www.ijsciences.com/pub/pdf/V82019051897.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.18483/ijSci.1897?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Mekhilef, S., 2011. "A review on prospect of Jatropha curcas for biodiesel in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3733-3756.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Is Fatimah & Imam Sahroni & Ganjar Fadillah & Muhammad Miqdam Musawwa & Teuku Meurah Indra Mahlia & Oki Muraza, 2019. "Glycerol to Solketal for Fuel Additive: Recent Progress in Heterogeneous Catalysts," Energies, MDPI, vol. 12(15), pages 1-14, July.
    2. van Eijck, Janske & Romijn, Henny & Balkema, Annelies & Faaij, André, 2014. "Global experience with jatropha cultivation for bioenergy: An assessment of socio-economic and environmental aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 869-889.
    3. Rashed, M.M. & Masjuki, H.H. & Kalam, M.A. & Alabdulkarem, Abdullah & Rahman, M.M. & Imdadul, H.K. & Rashedul, H.K., 2016. "Study of the oxidation stability and exhaust emission analysis of Moringa olifera biodiesel in a multi-cylinder diesel engine with aromatic amine antioxidants," Renewable Energy, Elsevier, vol. 94(C), pages 294-303.
    4. Ong, Hwai Chyuan & Masjuki, H.H. & Mahlia, T.M.I. & Silitonga, A.S. & Chong, W.T. & Yusaf, Talal, 2014. "Engine performance and emissions using Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in a CI diesel engine," Energy, Elsevier, vol. 69(C), pages 427-445.
    5. Alaswad, A. & Dassisti, M. & Prescott, T. & Olabi, A.G., 2015. "Technologies and developments of third generation biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1446-1460.
    6. Mohd Noor, C.W. & Noor, M.M. & Mamat, R., 2018. "Biodiesel as alternative fuel for marine diesel engine applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 127-142.
    7. Laviola, Bruno Galvêas & Rodrigues, Erina Vitório & Teodoro, Paulo Eduardo & Peixoto, Leonardo de Azevedo & Bhering, Leonardo Lopes, 2017. "Biometric and biotechnology strategies in Jatropha genetic breeding for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 894-904.
    8. Cao, Yan & Doustgani, Amir & Salehi, Abozar & Nemati, Mohammad & Ghasemi, Amir & Koohshekan, Omid, 2020. "The economic evaluation of establishing a plant for producing biodiesel from edible oil wastes in oil-rich countries: Case study Iran," Energy, Elsevier, vol. 213(C).
    9. Yu, Ziyue & Zhang, Fan & Gao, Chenzhen & Mangi, Eugenio & Ali, Cheshmehzangi, 2024. "The potential for bioenergy generated on marginal land to offset agricultural greenhouse gas emissions in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    10. Mahlia, T.M.I. & Syazmi, Z.A.H.S. & Mofijur, M. & Abas, A.E. Pg & Bilad, M.R. & Ong, Hwai Chyuan & Silitonga, A.S., 2020. "Patent landscape review on biodiesel production: Technology updates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    11. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    12. Mohammad Anwar & Mohammad G. Rasul & Nanjappa Ashwath & Md Mofijur Rahman, 2018. "Optimisation of Second-Generation Biodiesel Production from Australian Native Stone Fruit Oil Using Response Surface Method," Energies, MDPI, vol. 11(10), pages 1-18, September.
    13. Chen, Shuang & Zhou, Guilin & Miao, Caixia, 2019. "Green and renewable bio-diesel produce from oil hydrodeoxygenation: Strategies for catalyst development and mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 568-589.
    14. Zulqarnain & Muhammad Ayoub & Mohd Hizami Mohd Yusoff & Muhammad Hamza Nazir & Imtisal Zahid & Mariam Ameen & Farooq Sher & Dita Floresyona & Eduardus Budi Nursanto, 2021. "A Comprehensive Review on Oil Extraction and Biodiesel Production Technologies," Sustainability, MDPI, vol. 13(2), pages 1-28, January.
    15. Pandey, Vimal Chandra & Singh, Kripal & Singh, Jay Shankar & Kumar, Akhilesh & Singh, Bajrang & Singh, Rana P., 2012. "Jatropha curcas: A potential biofuel plant for sustainable environmental development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2870-2883.
    16. Edrisi, Sheikh Adil & Dubey, Rama Kant & Tripathi, Vishal & Bakshi, Mansi & Srivastava, Pankaj & Jamil, Sarah & Singh, H.B. & Singh, Nandita & Abhilash, P.C., 2015. "Jatropha curcas L.: A crucified plant waiting for resurgence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 855-862.
    17. Kumar, S. & Shrestha, Pujan & Abdul Salam, P., 2013. "A review of biofuel policies in the major biofuel producing countries of ASEAN: Production, targets, policy drivers and impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 822-836.
    18. Habibullah, M. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Mofijur, M. & Mobarak, H.M. & Ashraful, A.M., 2015. "Potential of biodiesel as a renewable energy source in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 819-834.
    19. Motasemi, F. & Afzal, Muhammad T., 2013. "A review on the microwave-assisted pyrolysis technique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 317-330.
    20. Nasruddin, & Idrus Alhamid, M. & Daud, Yunus & Surachman, Arief & Sugiyono, Agus & Aditya, H.B. & Mahlia, T.M.I., 2016. "Potential of geothermal energy for electricity generation in Indonesia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 733-740.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adm:journl:v:8:y:2019:i:5:p:99-105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Staff ijSciences (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.