IDEAS home Printed from https://ideas.repec.org/a/adm/journl/v5y2016i7p11-19.html
   My bibliography  Save this article

Assessment of Water Suitability for Irrigation in Keffi, Nasarawa State, Nigeria

Author

Listed:
  • Christopher Onosemuode
  • Tega L. Ataikiru
  • Osayomwanbor E. Oghama

Abstract

The assessment of water quality for irrigation was carried out on the Antau river and surrounding wells in Keffi. Samples were collected along the river course; 150m apart using standard methods and at five different points using the grab technique. Also, samples were collected from wells in the study area. The colorimetric and titrimetric methods were used for water sample analysis. These methods were used to determine the presence of several elements in the different water samples used for agricultural purposes. Electrical conductivity, pH, nitrate, boron, temperature, total nitrogen, sulphate, sodium adsorption ratio (SAR) and adjusted sodium adsorption ratio (Adj. SAR) were determined for the samples. The values of the parameters were compared with recommended standards. A comparative analysis was carried out between river and well water. The high value of total dissolved solids and electrical conductivity were indications of the presence of high amount of salts in water. Bicarbonates concentration was low in the study area with mean values of 0.6075 and 0.0153 for river Antau and wells, respectively. Low values of 0.0054 - 0.0283 (Antau river) and 0.0216 - 1.4257 (well) of boron were obtained in this study. The water from the Antau River and wells were classified using sodium adsorption ratio (SAR) and electrical conductivity as stated by salinity hazards United States Department of Agriculture (USDA) as bad, marginal, moderate and good water. On the whole, well water was better than the Antau River but both sources of water can be used for agricultural purposes.

Suggested Citation

  • Christopher Onosemuode & Tega L. Ataikiru & Osayomwanbor E. Oghama, 2016. "Assessment of Water Suitability for Irrigation in Keffi, Nasarawa State, Nigeria," International Journal of Sciences, Office ijSciences, vol. 5(07), pages 11-19, July.
  • Handle: RePEc:adm:journl:v:5:y:2016:i:7:p:11-19
    DOI: 10.18483/ijSci.998
    as

    Download full text from publisher

    File URL: https://www.ijsciences.com/pub/article/998
    Download Restriction: no

    File URL: https://www.ijsciences.com/pub/pdf/V5201607998.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.18483/ijSci.998?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Grattan, S. R. & Grieve, C. M. & Poss, J. A. & Robinson, P. H. & Suarez, D. L. & Benes, S. E., 2004. "Evaluation of salt-tolerant forages for sequential water reuse systems: I. Biomass production," Agricultural Water Management, Elsevier, vol. 70(2), pages 109-120, November.
    2. Grattan, S.R. & Grieve, C.M. & Poss, J.A. & Robinson, P.H. & Suarez, D.L. & Benes, S.E., 2004. "Evaluation of salt-tolerant forages for sequential water reuse systems: III. Potential implications for ruminant mineral nutrition," Agricultural Water Management, Elsevier, vol. 70(2), pages 137-150, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge F. S. Ferreira & Monica V. Cornacchione & Xuan Liu & Donald L. Suarez, 2015. "Nutrient Composition, Forage Parameters, and Antioxidant Capacity of Alfalfa ( Medicago sativa , L.) in Response to Saline Irrigation Water," Agriculture, MDPI, vol. 5(3), pages 1-21, July.
    2. Díaz, F.J. & Benes, S.E. & Grattan, S.R., 2013. "Field performance of halophytic species under irrigation with saline drainage water in the San Joaquin Valley of California," Agricultural Water Management, Elsevier, vol. 118(C), pages 59-69.
    3. Díaz, F.J. & Grattan, S.R. & Reyes, J.A. & de la Roza-Delgado, B. & Benes, S.E. & Jiménez, C. & Dorta, M. & Tejedor, M., 2018. "Using saline soil and marginal quality water to produce alfalfa in arid climates," Agricultural Water Management, Elsevier, vol. 199(C), pages 11-21.
    4. Li, Jianshe & Gao, Yanming & Zhang, Xueyan & Tian, Ping & Li, Juan & Tian, Yongqiang, 2019. "Comprehensive comparison of different saline water irrigation strategies for tomato production: Soil properties, plant growth, fruit yield and fruit quality," Agricultural Water Management, Elsevier, vol. 213(C), pages 521-533.
    5. Suyama, H. & Benes, S.E. & Robinson, P.H. & Grattan, S.R. & Grieve, C.M. & Getachew, G., 2007. "Forage yield and quality under irrigation with saline-sodic drainage water: Greenhouse evaluation," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 159-172, March.
    6. Shital Poudyal & Valtcho D. Zheljazkov, 2021. "Irrigation with Coalbed Methane Co-Produced Water Reduces Forage Yield and Increases Soil Sodicity However Does Not Impact Forage Quality," Sustainability, MDPI, vol. 13(6), pages 1-11, March.
    7. Máximo F. Alonso & Dennis L. Corwin & James D. Oster & John Maas & Stephen R. Kaffka, 2013. "Modeling a Sustainable Salt Tolerant Grass-Livestock Production System under Saline Conditions in the Western San Joaquin Valley of California," Sustainability, MDPI, vol. 5(9), pages 1-19, September.
    8. Qadir, M. & Sharma, B.R. & Bruggeman, A. & Choukr-Allah, R. & Karajeh, F., 2007. "Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries," Agricultural Water Management, Elsevier, vol. 87(1), pages 2-22, January.
    9. Saadat, Saeed & Homaee, Mehdi, 2015. "Modeling sorghum response to irrigation water salinity at early growth stage," Agricultural Water Management, Elsevier, vol. 152(C), pages 119-124.
    10. Ayars, James E. & Shouse, Peter & Lesch, Scott M., 2009. "In situ use of groundwater by alfalfa," Agricultural Water Management, Elsevier, vol. 96(11), pages 1579-1586, November.
    11. da Fonseca, Adriel Ferreira & Melfi, Adolpho Jose & Monteiro, Francisco Antonio & Montes, Celia Regina & Almeida, Vagner Vidal de & Herpin, Uwe, 2007. "Treated sewage effluent as a source of water and nitrogen for Tifton 85 bermudagrass," Agricultural Water Management, Elsevier, vol. 87(3), pages 328-336, February.
    12. Grattan, S.R. & Grieve, C.M. & Poss, J.A. & Robinson, P.H. & Suarez, D.L. & Benes, S.E., 2004. "Evaluation of salt-tolerant forages for sequential water reuse systems: III. Potential implications for ruminant mineral nutrition," Agricultural Water Management, Elsevier, vol. 70(2), pages 137-150, November.
    13. Benes, S.E. & Adhikari, D.D. & Grattan, S.R. & Snyder, R.L., 2012. "Evapotranspiration potential of forages irrigated with saline-sodic drainage water," Agricultural Water Management, Elsevier, vol. 105(C), pages 1-7.
    14. Wei Li & Junliang Yin & Dongfang Ma & Qi Zheng & Hongwei Li & Jianlin Wang & Maolin Zhao & Xiaojing Liu & Zhensheng Li, 2023. "Acceptable Salinity Level for Saline Water Irrigation of Tall Wheatgrass in Edaphoclimatic Scenarios of the Coastal Saline–Alkaline Land around Bohai Sea," Agriculture, MDPI, vol. 13(11), pages 1-19, November.
    15. Elgallal, M. & Fletcher, L. & Evans, B., 2016. "Assessment of potential risks associated with chemicals in wastewater used for irrigation in arid and semiarid zones: A review," Agricultural Water Management, Elsevier, vol. 177(C), pages 419-431.
    16. Grieve, C.M. & Poss, J.A. & Grattan, S.R. & Suarez, D.L. & Benes, S.E. & Robinson, P.H., 2004. "Evaluation of salt-tolerant forages for sequential water reuse systems: II. Plant-ion relations," Agricultural Water Management, Elsevier, vol. 70(2), pages 121-135, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adm:journl:v:5:y:2016:i:7:p:11-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Staff ijSciences (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.