IDEAS home Printed from https://ideas.repec.org/r/zbw/sfb649/sfb649dp2009-003.html
   My bibliography  Save this item

Localized realized volatility modelling

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Xiu Xu & Andrija Mihoci & Wolfgang Karl Hardle, 2020. "lCARE -- localizing Conditional AutoRegressive Expectiles," Papers 2009.13215, arXiv.org.
  2. Chen, Ying & Han, Qian & Niu, Linlin, 2018. "Forecasting the term structure of option implied volatility: The power of an adaptive method," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 157-177.
  3. Heejoon Han & Myung D. Park & Shen Zhang, 2015. "A Multiplicative Error Model with Heterogeneous Components for Forecasting Realized Volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(3), pages 209-219, April.
  4. Ruprecht Puchstein & Philip Preuß, 2016. "Testing for Stationarity in Multivariate Locally Stationary Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 3-29, January.
  5. Shen, Zhiwei, 2016. "Adaptive local parametric estimation of crop yields: implication for crop insurance ratemaking," 156th Seminar, October 4, 2016, Wageningen, The Netherlands 249984, European Association of Agricultural Economists.
  6. Eric Hillebrand & Marcelo C. Medeiros, 2016. "Nonlinearity, Breaks, and Long-Range Dependence in Time-Series Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 23-41, January.
  7. Francesco Audrino & Simon D. Knaus, 2016. "Lassoing the HAR Model: A Model Selection Perspective on Realized Volatility Dynamics," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1485-1521, December.
  8. Lutz, Benjamin Johannes & Pigorsch, Uta & Rotfuß, Waldemar, 2013. "Nonlinearity in cap-and-trade systems: The EUA price and its fundamentals," Energy Economics, Elsevier, vol. 40(C), pages 222-232.
  9. Xu, Xiu & Mihoci, Andrija & Härdle, Wolfgang Karl, 2018. "lCARE - localizing conditional autoregressive expectiles," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 198-220.
  10. repec:hum:wpaper:sfb649dp2014-035 is not listed on IDEAS
  11. repec:hum:wpaper:sfb649dp2012-034 is not listed on IDEAS
  12. repec:hum:wpaper:sfb649dp2015-052 is not listed on IDEAS
  13. repec:bof:bofitp:urn:nbn:fi:bof-201504131155 is not listed on IDEAS
  14. Philip Preuss & Ruprecht Puchstein & Holger Dette, 2015. "Detection of Multiple Structural Breaks in Multivariate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 654-668, June.
  15. Li, Xinjue & Zboňáková, Lenka & Wang, Weining & Härdle, Wolfgang Karl, 2019. "Combining Penalization and Adaption in High Dimension with Application in Bond Risk Premia Forecasting," IRTG 1792 Discussion Papers 2019-030, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
  16. Niu, Linlin & Xu, Xiu & Chen, Ying, 2017. "An adaptive approach to forecasting three key macroeconomic variables for transitional China," Economic Modelling, Elsevier, vol. 66(C), pages 201-213.
  17. Ying Chen & Bo Li, 2017. "An Adaptive Functional Autoregressive Forecast Model to Predict Electricity Price Curves," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 371-388, July.
  18. Golosnoy, Vasyl & Ragulin, Sergiy & Schmid, Wolfgang, 2011. "CUSUM control charts for monitoring optimal portfolio weights," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2991-3009, November.
  19. Hong Li & Johnny Siu-Hang Li, 2017. "Optimizing the Lee-Carter Approach in the Presence of Structural Changes in Time and Age Patterns of Mortality Improvements," Demography, Springer;Population Association of America (PAA), vol. 54(3), pages 1073-1095, June.
  20. Wolfgang K. Härdle & Nikolaus Hautsch & Andrija Mihoci, 2015. "Local Adaptive Multiplicative Error Models for High‐Frequency Forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 529-550, June.
  21. Buncic, Daniel & Gisler, Katja I.M., 2016. "Global equity market volatility spillovers: A broader role for the United States," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1317-1339.
  22. Kley, Tobias & Preuss, Philip & Fryzlewicz, Piotr, 2019. "Predictive, finite-sample model choice for time series under stationarity and non-stationarity," LSE Research Online Documents on Economics 101748, London School of Economics and Political Science, LSE Library.
  23. Fengler, Matthias R. & Okhrin, Ostap, 2012. "Realized copula," SFB 649 Discussion Papers 2012-034, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  24. repec:hum:wpaper:sfb649dp2009-004 is not listed on IDEAS
  25. repec:zbw:bofitp:2015_012 is not listed on IDEAS
  26. Lim, Kian Guan & Chen, Ying & Yap, Nelson K.L., 2019. "Intraday information from S&P 500 Index futures options," Journal of Financial Markets, Elsevier, vol. 42(C), pages 29-55.
  27. Niu, Linlin & Xu, Xiu & Chen, Ying, 2017. "An adaptive approach to forecasting three key macroeconomic variables for transitional China," Economic Modelling, Elsevier, vol. 66(C), pages 201-213.
  28. Klochkov, Yegor & Härdle, Wolfgang Karl & Xu, Xiu, 2019. "Localizing Multivariate CAViaR," IRTG 1792 Discussion Papers 2019-007, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
  29. Baranovski, Alexander & von Lieres und Wilkau, Carsten & Wilch, André, 2009. "New recipes for estimating default intensities," SFB 649 Discussion Papers 2009-004, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  30. Fengler, Matthias R. & Okhrin, Ostap, 2016. "Managing risk with a realized copula parameter," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 131-152.
  31. Niels Gillmann & Ostap Okhrin, 2023. "Adaptive local VAR for dynamic economic policy uncertainty spillover," Papers 2302.02808, arXiv.org.
  32. Härdle, Wolfgang Karl & Mihoci, Andrija & Ting, Christopher Hian-Ann, 2014. "Adaptive order flow forecasting with multiplicative error models," SFB 649 Discussion Papers 2014-035, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  33. repec:zbw:bofitp:urn:nbn:fi:bof-201504131155 is not listed on IDEAS
  34. Ming-Hsien Chen & Vivian Tai, 2014. "The price discovery of day trading activities in futures market," Review of Derivatives Research, Springer, vol. 17(2), pages 217-239, July.
  35. Ying Chen & Bo Li & Linlin Niu, 2013. "A Local Vector Autoregressive Framework and its Applications to Multivariate Time Series Monitoring and Forecasting," Working Papers 2013-12-05, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
  36. Andrija Mihoci & Christopher Hian-Ann Ting & Meng-Jou Lu & Kainat Khowaja, 2022. "Adaptive order flow forecasting with multiplicative error models," Digital Finance, Springer, vol. 4(1), pages 89-108, March.
  37. Won-Tak Hong & Jiwon Lee & Eunju Hwang, 2020. "A Note on the Asymptotic Normality Theory of the Least Squares Estimates in Multivariate HAR-RV Models," Mathematics, MDPI, vol. 8(11), pages 1-18, November.
  38. Dedy Dwi Prastyo & Härdle, Wolfgang Karl, 2014. "Localising forward intensities for multiperiod corporate default," SFB 649 Discussion Papers 2014-040, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  39. Chen, Ying & Niu, Linlin, 2014. "Adaptive dynamic Nelson–Siegel term structure model with applications," Journal of Econometrics, Elsevier, vol. 180(1), pages 98-115.
  40. repec:hum:wpaper:sfb649dp2014-040 is not listed on IDEAS
  41. Chao Zhang & Piotr Kokoszka & Alexander Petersen, 2022. "Wasserstein autoregressive models for density time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 30-52, January.
  42. Wang, Yudong & Ma, Feng & Wei, Yu & Wu, Chongfeng, 2016. "Forecasting realized volatility in a changing world: A dynamic model averaging approach," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 136-149.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.