IDEAS home Printed from https://ideas.repec.org/r/zbw/cfswop/200508.html
   My bibliography  Save this item

Volatility forecasting

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Courtenay, Roger & Clare, Andrew, 2001. "What can we learn about monetary policy transparency from financial market data?," Discussion Paper Series 1: Economic Studies 2001,06, Deutsche Bundesbank.
  2. Peter F. Christoffersen & Francis X. Diebold & Roberto S. Mariano & Anthony S. Tay & Yiu Kuen Tse, 2006. "Direction-of-Change Forecasts Based on Conditional Variance, Skewness and Kurtosis Dynamics: International Evidence," PIER Working Paper Archive 06-016, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  3. Victor Olkhov, 2021. "Three Remarks On Asset Pricing," Papers 2105.13903, arXiv.org, revised Jan 2024.
  4. Zareipour, Hamidreza & Bhattacharya, Kankar & Canizares, Claudio A., 2007. "Electricity market price volatility: The case of Ontario," Energy Policy, Elsevier, vol. 35(9), pages 4739-4748, September.
  5. Gregory Bauer & Keith Vorkink, 2007. "Multivariate Realized Stock Market Volatility," Staff Working Papers 07-20, Bank of Canada.
  6. Lux, Thomas & Morales-Arias, Leonardo, 2010. "Relative forecasting performance of volatility models: Monte Carlo evidence," Kiel Working Papers 1582, Kiel Institute for the World Economy (IfW Kiel).
  7. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
  8. Eric Jacquier & Nicholas G. Polson & Peter Rossi, "undated". "Stochastic Volatility: Univariate and Multivariate Extensions," Rodney L. White Center for Financial Research Working Papers 19-95, Wharton School Rodney L. White Center for Financial Research.
  9. Olkhov, Victor, 2022. "The Market-Based Asset Price Probability," MPRA Paper 113096, University Library of Munich, Germany.
  10. Olkhov, Victor, 2020. "Price, Volatility and the Second-Order Economic Theory," MPRA Paper 102767, University Library of Munich, Germany.
  11. Andersen, Torben G. & Bollerslev, Tim & Huang, Xin, 2011. "A reduced form framework for modeling volatility of speculative prices based on realized variation measures," Journal of Econometrics, Elsevier, vol. 160(1), pages 176-189, January.
  12. Luisa Bisaglia & Silvano Bordignon & Francesco Lisi, 2003. "k -Factor GARMA models for intraday volatility forecasting," Applied Economics Letters, Taylor & Francis Journals, vol. 10(4), pages 251-254.
  13. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
  14. Matei, Marius, 2010. "Risk analysis in the evaluation of the international investment opportunities. Advances in modelling and forecasting volatility for risk assessment purposes," Working Papers of Institute for Economic Forecasting 100201, Institute for Economic Forecasting.
  15. Hao Zhou, 2003. "Itô Conditional Moment Generator and the Estimation of Short-Rate Processes," Journal of Financial Econometrics, Oxford University Press, vol. 1(2), pages 250-271.
  16. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Jin Wu, 2005. "A Framework for Exploring the Macroeconomic Determinants of Systematic Risk," American Economic Review, American Economic Association, vol. 95(2), pages 398-404, May.
  17. Yan-Leung Cheung & Yin-Wong Cheung & Alan T. K. Wan, 2009. "A high-low model of daily stock price ranges," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 103-119.
  18. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
  19. Zhu, Dongming & Zinde-Walsh, Victoria, 2009. "Properties and estimation of asymmetric exponential power distribution," Journal of Econometrics, Elsevier, vol. 148(1), pages 86-99, January.
  20. Rime, Dagfinn & Sucarrat, Genaro, 2007. "Exchange rate variability, market activity and heterogeneity," UC3M Working papers. Economics we077039, Universidad Carlos III de Madrid. Departamento de Economía.
  21. Bauer, Gregory H. & Vorkink, Keith, 2011. "Forecasting multivariate realized stock market volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 93-101, January.
  22. Guidolin, Massimo & Timmermann, Allan, 2006. "Term structure of risk under alternative econometric specifications," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 285-308.
  23. Milan Ficura & Jiri Witzany, 2016. "Estimating Stochastic Volatility and Jumps Using High-Frequency Data and Bayesian Methods," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 66(4), pages 278-301, August.
  24. Genaro, SUCARRAT, 2006. "The First Stage in Hendry’s Reduction Theory Revisited," Discussion Papers (ECON - Département des Sciences Economiques) 2006041, Université catholique de Louvain, Département des Sciences Economiques.
  25. Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "High-Frequency and Model-Free Volatility Estimators," Working Papers 2009-13, Faculty of Economic Sciences, University of Warsaw.
  26. Victor Olkhov, 2020. "Volatility Depends on Market Trades and Macro Theory," Papers 2008.07907, arXiv.org, revised Jun 2024.
  27. Ariño, Miguel A. & Canela, Miguel A., 2006. "Study of the dollar-euro exchange rate," IESE Research Papers D/620, IESE Business School, revised 30 Mar 2006.
  28. Torben G. Andersen & Tim Bollerslev & Per Frederiksen & Morten Ørregaard Nielsen, 2010. "Continuous-time models, realized volatilities, and testable distributional implications for daily stock returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 233-261.
  29. Abramov, Vyacheslav & Klebaner, Fima, 2006. "Forecasting and testing a non-constant volatility," MPRA Paper 207, University Library of Munich, Germany.
  30. Allen, P. Geoffrey & Morzuch, Bernard J., 2006. "Twenty-five years of progress, problems, and conflicting evidence in econometric forecasting. What about the next 25 years?," International Journal of Forecasting, Elsevier, vol. 22(3), pages 475-492.
  31. David McMillan & Alan Speight, 2005. "Long-memory and heterogeneous components in high frequency Pacific-Basin exchange rate volatility," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 12(3), pages 199-226, September.
  32. Lux, Thomas & Morales-Arias, Leonardo, 2009. "Forecasting volatility under fractality, regime-switching, long memory and student-t innovations," Kiel Working Papers 1532, Kiel Institute for the World Economy (IfW Kiel).
  33. Suhejla Hoti & Esfandiar Maasoumi & Michael McAleer & Daniel Slottje, 2009. "Measuring the Volatility in U.S. Treasury Benchmarks and Debt Instruments," Econometric Reviews, Taylor & Francis Journals, vol. 28(6), pages 522-554.
  34. Théoret, Raymond & Racicot, François-Éric, 2010. "Forecasting stochastic Volatility using the Kalman filter: an application to Canadian Interest Rates and Price-Earnings Ratio," MPRA Paper 35911, University Library of Munich, Germany.
  35. Francois-Éric Racicot & Raymond Théoret, 2005. "Quelques applications du filtre de Kalman en finance: estimation et prévision de la volatilité stochastique et du rapport cours-bénéfices," RePAd Working Paper Series UQO-DSA-wp0312005, Département des sciences administratives, UQO.
  36. Valeri Voev, 2009. "On the Economic Evaluation of Volatility Forecasts," CREATES Research Papers 2009-56, Department of Economics and Business Economics, Aarhus University.
  37. Qinkai Chen & Christian-Yann Robert, 2021. "Multivariate Realized Volatility Forecasting with Graph Neural Network," Papers 2112.09015, arXiv.org, revised Dec 2021.
  38. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
  39. Andrew Clare & Roger Courtenay, 2001. "Assessing the impact of macroeconomic news announcements on securities prices under different monetary policy regimes," Bank of England working papers 125, Bank of England.
  40. Olkhov, Victor, 2021. "To VaR, or Not to VaR, That is the Question," MPRA Paper 105458, University Library of Munich, Germany.
  41. Bistra Radeva, 2019. "Stock price fluctuations and GARCH modelling of stock market indexes," Economics and computer science, Publishing house "Knowledge and business" Varna, issue 3, pages 6-19.
  42. Wang, Weichen & An, Ran & Zhu, Ziwei, 2024. "Volatility prediction comparison via robust volatility proxies: An empirical deviation perspective," Journal of Econometrics, Elsevier, vol. 239(2).
  43. Sizova, Natalia, 2011. "Integrated variance forecasting: Model based vs. reduced form," Journal of Econometrics, Elsevier, vol. 162(2), pages 294-311, June.
  44. Juliusz Jabłecki & Ryszard Kokoszczyński & Paweł Sakowski & Robert Ślepaczuk & Piotr Wójcik, 2014. "Does historical volatility term structure contain valuable in-formation for predicting volatility index futures?," Working Papers 2014-18, Faculty of Economic Sciences, University of Warsaw.
  45. Veiga, Helena, 2006. "Volatility forecasts: a continuous time model versus discrete time models," DES - Working Papers. Statistics and Econometrics. WS ws062509, Universidad Carlos III de Madrid. Departamento de Estadística.
  46. Vyacheslav Abramov & Fima Klebaner, 2007. "Estimation and Prediction of a Non-Constant Volatility," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(1), pages 1-23, March.
  47. Bretó, Carles & Veiga, Helena, 2011. "Forecasting volatility: does continuous time do better than discrete time?," DES - Working Papers. Statistics and Econometrics. WS ws112518, Universidad Carlos III de Madrid. Departamento de Estadística.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.