IDEAS home Printed from https://ideas.repec.org/r/wop/safiwp/01-06-032.html
   My bibliography  Save this item

The Structure of Growing Social Networks

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zhu, Zhiguo, 2013. "Discovering the influential users oriented to viral marketing based on online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(16), pages 3459-3469.
  2. Tian, Lixin & Huang, Yi & Dong, Gaogao & Du, Ruijin & Shi, Liu, 2014. "Robustness of interdependent and interconnected clustered networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 120-126.
  3. Claes Andersson & Koen Frenken & Alexander Hellervik, 2006. "A Complex Network Approach to Urban Growth," Environment and Planning A, , vol. 38(10), pages 1941-1964, October.
  4. Liang Chen & Guy G. Gable & Haibo Hu, 2013. "Communication and organizational social networks: a simulation model," Computational and Mathematical Organization Theory, Springer, vol. 19(4), pages 460-479, December.
  5. Shaun Lichter & Christopher Griffin & Terry Friesz, 2023. "The Calculation and Simulation of the Price of Anarchy for Network Formation Games," Networks and Spatial Economics, Springer, vol. 23(3), pages 581-610, September.
  6. Ikeda, Nobutoshi, 2010. "Impact of initial lattice structures on networks generated by traces of random walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3336-3347.
  7. Stanislaw Drozdz & Andrzej Kulig & Jaroslaw Kwapien & Artur Niewiarowski & Marek Stanuszek, 2017. "Hierarchical organization of H. Eugene Stanley scientific collaboration community in weighted network representation," Papers 1705.06208, arXiv.org, revised Oct 2017.
  8. Konc, Théo & Savin, Ivan & van den Bergh, Jeroen C.J.M., 2021. "The social multiplier of environmental policy: Application to carbon taxation," Journal of Environmental Economics and Management, Elsevier, vol. 105(C).
  9. Sergei Sidorov & Timofei Emelianov & Sergei Mironov & Elena Sidorova & Yuri Kostyukhin & Alexandr Volkov & Anna Ostrovskaya & Lyudmila Polezharova, 2024. "Network Evolution Model with Preferential Attachment at Triadic Formation Step," Mathematics, MDPI, vol. 12(5), pages 1-21, February.
  10. Perc, Matjaž, 2010. "Growth and structure of Slovenia’s scientific collaboration network," Journal of Informetrics, Elsevier, vol. 4(4), pages 475-482.
  11. Sidorov, Sergei & Mironov, Sergei, 2021. "Growth network models with random number of attached links," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 576(C).
  12. Gergő Tóth & Balázs Lengyel, 2021. "Inter-firm inventor mobility and the role of co-inventor networks in producing high-impact innovation," The Journal of Technology Transfer, Springer, vol. 46(1), pages 117-137, February.
  13. Anthony FJ van Raan, 2024. "Simulating urban scaling with a term linkages network of a university," Environment and Planning B, , vol. 51(9), pages 2092-2107, November.
  14. P.B., Divya & Lekha, Divya Sindhu & Johnson, T.P. & Balakrishnan, Kannan, 2022. "Vulnerability of link-weighted complex networks in central attacks and fallback strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
  15. Haizheng Zhang & Baojun Qiu & Kristinka Ivanova & C. Lee Giles & Henry C. Foley & John Yen, 2010. "Locality and attachedness‐based temporal social network growth dynamics analysis: A case study of evolving nanotechnology scientific collaboration networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(5), pages 964-977, May.
  16. Ronald, Nicole & Arentze, Theo & Timmermans, Harry, 2012. "Modeling social interactions between individuals for joint activity scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 46(2), pages 276-290.
  17. Yu Zhang & Yu Wu, 2012. "How behaviors spread in dynamic social networks," Computational and Mathematical Organization Theory, Springer, vol. 18(4), pages 419-444, December.
  18. Junlong Zhao & Xiumin Liu & Hansheng Wang & Chenlei Leng, 2022. "Dimension reduction for covariates in network data [On semidefinite relaxations for the block model]," Biometrika, Biometrika Trust, vol. 109(1), pages 85-102.
  19. Johansson, Tobias, 2017. "Gossip spread in social network Models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 126-134.
  20. Inoue, Hiroyasu, 2014. "A two-layer team-assembly model for invention networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 181-188.
  21. Huang, Chung-Yuan & Tsai, Yu-Shiuan, 2010. "Effects of friend-making resources/costs and remembering on acquaintance networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 604-622.
  22. Kaye-Blake, William & Schilling, Chris & Monaghan, Ross & Vibart, Ronaldo & Dennis, Samuel & Post, Elizabeth, 2019. "Quantification of environmental-economic trade-offs in nutrient management policies," Agricultural Systems, Elsevier, vol. 173(C), pages 458-468.
  23. Russell Golman & Aditi Jain & Sonica Saraf, 2019. "Hipsters and the Cool: A Game Theoretic Analysis of Social Identity, Trends and Fads," Papers 1910.13385, arXiv.org.
  24. Li, Yongli & Luo, Peng & Fan, Zhi-ping & Chen, Kun & Liu, Jiaguo, 2017. "A utility-based link prediction method in social networks," European Journal of Operational Research, Elsevier, vol. 260(2), pages 693-705.
  25. López, Luis & F.F. Mendes, Jose & Sanjuán, Miguel A.F, 2002. "Hierarchical social networks and information flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 695-708.
  26. Karan, Rituraj & Biswal, Bibhu, 2017. "A model for evolution of overlapping community networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 380-390.
  27. ChristianR. Jaramillo H., 2005. "The Role Of Networks In Collective Action With Costly Communication," Documentos CEDE 3625, Universidad de los Andes, Facultad de Economía, CEDE.
  28. Jayles, Bertrand & Cheong, Siew Ann & Herrmann, Hans J., 2022. "Interactions between communities improve the resilience of multicultural societies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
  29. Shiau, Wen-Lung & Dwivedi, Yogesh K. & Yang, Han Suan, 2017. "Co-citation and cluster analyses of extant literature on social networks," International Journal of Information Management, Elsevier, vol. 37(5), pages 390-399.
  30. Little, L.R. & McDonald, A.D., 2007. "Simulations of agents in social networks harvesting a resource," Ecological Modelling, Elsevier, vol. 204(3), pages 379-386.
  31. Lipari, Francesca & Lázaro-Touza, Lara & Escribano, Gonzalo & Sánchez, Ángel & Antonioni, Alberto, 2024. "When the design of climate policy meets public acceptance: An adaptive multiplex network model," Ecological Economics, Elsevier, vol. 217(C).
  32. Jayles, Bertrand & Cheong, Siew Ann & Herrmann, Hans J., 2022. "Modeling the resilience of social networks to lockdowns regarding the dynamics of meetings," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
  33. Hendrik Ludolph & Gilbert Babin & Peter Kropf, 2003. "A Communication Framework Towards Flexible Associations of Business Entities Within Evolving Environments," CIRANO Working Papers 2003s-43, CIRANO.
  34. Hackney, Jeremy & Marchal, Fabrice, 2011. "A coupled multi-agent microsimulation of social interactions and transportation behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(4), pages 296-309, May.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.