IDEAS home Printed from https://ideas.repec.org/r/wly/canjec/v47y2014i1p1-34.html
   My bibliography  Save this item

Viewpoint: Boosting Recessions

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
  2. Cyrille Lenoel & Garry Young, 2020. "Real-time turning point indicators: Review of current international practices," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2020-05, Economic Statistics Centre of Excellence (ESCoE).
  3. Peter C. B. Phillips & Zhentao Shi, 2021. "Boosting: Why You Can Use The Hp Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 521-570, May.
  4. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
  5. Davig, Troy & Hall, Aaron Smalter, 2019. "Recession forecasting using Bayesian classification," International Journal of Forecasting, Elsevier, vol. 35(3), pages 848-867.
  6. Dalibor Stevanovic & Rachidi Kotchoni, 2016. "Forecasting U.S. Recessions and Economic Activity," CIRANO Working Papers 2016s-36, CIRANO.
  7. Lauri Nevasalmi, 2022. "Recession forecasting with high‐dimensional data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 752-764, July.
  8. Heikki Kauppi, 2019. "Recession Prediction with OptimalUse of Leading Indicators," Discussion Papers 125, Aboa Centre for Economics.
  9. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021. "Economic Predictions With Big Data: The Illusion of Sparsity," Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
  10. Peter C.B. Phillips & Zhentao Shi, 2019. "Boosting the Hodrick-Prescott Filter," Cowles Foundation Discussion Papers 2192, Cowles Foundation for Research in Economics, Yale University.
  11. Lahiri, Kajal & Yang, Cheng, 2022. "Boosting tax revenues with mixed-frequency data in the aftermath of COVID-19: The case of New York," International Journal of Forecasting, Elsevier, vol. 38(2), pages 545-566.
  12. Marcus Buckmann & Andy Haldane & Anne-Caroline Hüser, 2021. "Comparing minds and machines: implications for financial stability," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 37(3), pages 479-508.
  13. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
  14. Bluwstein, Kristina & Buckmann, Marcus & Joseph, Andreas & Kapadia, Sujit & Şimşek, Özgür, 2023. "Credit growth, the yield curve and financial crisis prediction: Evidence from a machine learning approach," Journal of International Economics, Elsevier, vol. 145(C).
  15. Huiwen Lai & Eric C. Y. Ng, 2020. "On business cycle forecasting," Frontiers of Business Research in China, Springer, vol. 14(1), pages 1-26, December.
  16. Michael Puglia & Adam Tucker, 2020. "Machine Learning, the Treasury Yield Curve and Recession Forecasting," Finance and Economics Discussion Series 2020-038, Board of Governors of the Federal Reserve System (U.S.).
  17. Hinterlang, Natascha & Hollmayr, Josef, 2020. "Classification of monetary and fiscal dominance regimes using machine learning techniques," Discussion Papers 51/2020, Deutsche Bundesbank.
  18. Balcilar, Mehmet & Gupta, Rangan & Segnon, Mawuli, 2016. "The role of economic policy uncertainty in predicting U.S. recessions: A mixed-frequency Markov-switching vector autoregressive approach," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 10, pages 1-20.
  19. Pierdzioch Christian & Gupta Rangan, 2020. "Uncertainty and Forecasts of U.S. Recessions," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(4), pages 1-20, September.
  20. Jianghao Chu & Tae-Hwy Lee & Aman Ullah, 2023. "Asymmetric AdaBoost for High-dimensional Maximum Score Regression," Working Papers 202306, University of California at Riverside, Department of Economics.
  21. Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017. "Predicting recessions with boosted regression trees," International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
  22. Seulki Chung, 2023. "Real-time Prediction of the Great Recession and the Covid-19 Recession," Papers 2310.08536, arXiv.org, revised May 2024.
  23. Anesti, Nikoleta & Kalamara, Eleni & Kapetanios, George, 2021. "Forecasting UK GDP growth with large survey panels," Bank of England working papers 923, Bank of England.
  24. Yousuf, Kashif & Ng, Serena, 2021. "Boosting high dimensional predictive regressions with time varying parameters," Journal of Econometrics, Elsevier, vol. 224(1), pages 60-87.
  25. Hinterlang, Natascha & Hollmayr, Josef, 2022. "Classification of monetary and fiscal dominance regimes using machine learning techniques," Journal of Macroeconomics, Elsevier, vol. 74(C).
  26. Azqueta-Gavaldon, Andres & Hirschbühl, Dominik & Onorante, Luca & Saiz, Lorena, 2020. "Nowcasting business cycle turning points with stock networks and machine learning," Working Paper Series 2494, European Central Bank.
  27. Giusto, Andrea & Piger, Jeremy, 2017. "Identifying business cycle turning points in real time with vector quantization," International Journal of Forecasting, Elsevier, vol. 33(1), pages 174-184.
  28. Vrontos, Spyridon D. & Galakis, John & Vrontos, Ioannis D., 2021. "Modeling and predicting U.S. recessions using machine learning techniques," International Journal of Forecasting, Elsevier, vol. 37(2), pages 647-671.
  29. Seulki Chung, 2023. "Inside the black box: Neural network-based real-time prediction of US recessions," Papers 2310.17571, arXiv.org, revised May 2024.
  30. Khoa Hoang & Robert Faff, 2021. "Is the ex‐ante equity risk premium always positive? Evidence from a new conditional expectations model," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(1), pages 95-124, March.
  31. Diptes C. P. Bhimjee, 2022. "Adaptive Early Warning Systems: An Axiomatic Approach," Journal of Central Banking Theory and Practice, Central bank of Montenegro, vol. 11(2), pages 145-164.
  32. Christiansen, Charlotte & Eriksen, Jonas N. & Møller, Stig V., 2019. "Negative house price co-movements and US recessions," Regional Science and Urban Economics, Elsevier, vol. 77(C), pages 382-394.
  33. Liu, Weiling & Moench, Emanuel, 2016. "What predicts US recessions?," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1138-1150.
  34. Hinterlang, Natascha & Hollmayr, Josef, 2021. "Classification of monetary and fiscal dominance regimes using machine learning techniques," IMFS Working Paper Series 160, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.