IDEAS home Printed from https://ideas.repec.org/r/tpr/restat/v62y1980i4p622-28.html
   My bibliography  Save this item

An Analysis of the Short-Run Consumer Demand for Gasoline Using Household Survey Data

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Javier Asensio & Anna Matas & José Luis Raymond, 2001. "Petrol consumption and redistributive effects of its taxation in Spain," Working Papers wp0109, Department of Applied Economics at Universitat Autonoma of Barcelona.
  2. Heesen, Florian & Madlener, Reinhard, 2021. "Revisiting heat energy consumption modeling: Household production theory applied to field experimental data," Energy Policy, Elsevier, vol. 158(C).
  3. Wadud, Zia & Noland, Robert B. & Graham, Daniel J., 2010. "A semiparametric model of household gasoline demand," Energy Economics, Elsevier, vol. 32(1), pages 93-101, January.
  4. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
  5. Brons, Martijn & Nijkamp, Peter & Pels, Eric & Rietveld, Piet, 2008. "A meta-analysis of the price elasticity of gasoline demand. A SUR approach," Energy Economics, Elsevier, vol. 30(5), pages 2105-2122, September.
  6. Mattioli, Giulio & Wadud, Zia & Lucas, Karen, 2018. "Vulnerability to fuel price increases in the UK: A household level analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 227-242.
  7. Nicol, C. J., 2003. "Elasticities of demand for gasoline in Canada and the United States," Energy Economics, Elsevier, vol. 25(2), pages 201-214, March.
  8. repec:wvu:wpaper:05-11 is not listed on IDEAS
  9. Asensio, Javier & Matas, Anna & Raymond, Jose-Luis, 2003. "Petrol expenditure and redistributive effects of its taxation in Spain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(1), pages 49-69, January.
  10. Havranek, Tomas & Irsova, Zuzana & Janda, Karel, 2012. "Demand for gasoline is more price-inelastic than commonly thought," Energy Economics, Elsevier, vol. 34(1), pages 201-207.
  11. Margaret Walls & Matthew Ashenfarb, 2022. "Efficiency and Equity of an Outdoor Recreation Equipment Tax to Fund Public Lands," Land Economics, University of Wisconsin Press, vol. 98(3), pages 520-536.
  12. Dongfeng Chang & Apostolos Serletis, 2014. "The Demand For Gasoline: Evidence From Household Survey Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(2), pages 291-313, March.
  13. Jimy Ferrer Carbonell & Roberto Escalante Semerena, 2014. "Demanda de gasolina en la zona metropolitana del Valle de México: análisis empírico de la reducción del subsidio," Revista de Economía del Rosario, Universidad del Rosario, June.
  14. Connie B. Dacuycuy, 2019. "Energy consumption, weather fluctuation, and household composition in the Philippines," Economics Bulletin, AccessEcon, vol. 39(1), pages 380-394.
  15. Puller, Steven L. & Greening, Lorna A., 1999. "Household adjustment to gasoline price change: an analysis using 9 years of US survey data," Energy Economics, Elsevier, vol. 21(1), pages 37-52, February.
  16. Liu, Weiwei, 2015. "Gasoline taxes or efficiency standards? A heterogeneous household demand analysis," Energy Policy, Elsevier, vol. 80(C), pages 54-64.
  17. Donna, Javier D., 2018. "Measuring Long-Run Price Elasticities in Urban Travel Demand," MPRA Paper 90260, University Library of Munich, Germany.
  18. T Nesbit, 2007. "Excise Taxation and Product Quality: The Gasoline Market," Economic Issues Journal Articles, Economic Issues, vol. 12(2), pages 1-14, September.
  19. Hendrik Schmitz & Reinhard Madlener, 2020. "Heterogeneity in price responsiveness for residential space heating in Germany," Empirical Economics, Springer, vol. 59(5), pages 2255-2281, November.
  20. Karathodorou, Niovi & Graham, Daniel J. & Noland, Robert B., 2010. "Estimating the effect of urban density on fuel demand," Energy Economics, Elsevier, vol. 32(1), pages 86-92, January.
  21. Liu, Weiwei, 2014. "Modeling gasoline demand in the United States: A flexible semiparametric approach," Energy Economics, Elsevier, vol. 45(C), pages 244-253.
  22. Reyes, Orlando & Sánchez, Luis, 2016. "La demanda de gasolinas, gas licuado de petróleo y electricidad en el Ecuador: elementos para una reforma fiscal ambiental," Documentos de Proyectos 40629, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
  23. Xian Zhang & Qinglong Wang & Weina Qin & Limei Guo, 2019. "Sustainable Policy Evaluation of Vehicle Exhaust Control—Empirical Data from China’s Air Pollution Control," Sustainability, MDPI, vol. 12(1), pages 1-18, December.
  24. Sipes, Kristin N. & Mendelsohn, Robert, 2001. "The effectiveness of gasoline taxation to manage air pollution," Ecological Economics, Elsevier, vol. 36(2), pages 299-309, February.
  25. Wadud, Zia & Graham, Daniel J. & Noland, Robert B., 2009. "Modelling fuel demand for different socio-economic groups," Applied Energy, Elsevier, vol. 86(12), pages 2740-2749, December.
  26. Park, Sung Y. & Zhao, Guochang, 2010. "An estimation of U.S. gasoline demand: A smooth time-varying cointegration approach," Energy Economics, Elsevier, vol. 32(1), pages 110-120, January.
  27. Matthew Riddle & James Boyce, 2007. "Cap and Dividend: How to Curb Global Warming while Protecting the Incomes of American Families," Working Papers wp150, Political Economy Research Institute, University of Massachusetts at Amherst.
  28. Christopher Taylor & Jeffrey Fischer, 2003. "A Review of West Coast Gasoline Pricing and the Impact of Regulations," International Journal of the Economics of Business, Taylor & Francis Journals, vol. 10(2), pages 225-243.
  29. Chen, Haotian & Smyth, Russell & Zhang, Xibin, 2017. "A Bayesian sampling approach to measuring the price responsiveness of gasoline demand using a constrained partially linear model," Energy Economics, Elsevier, vol. 67(C), pages 346-354.
  30. repec:wyi:journl:002107 is not listed on IDEAS
  31. R. Gutiérrez & R. Gutiérrez‐Sánchez & A. Nafidi, 2009. "Modelling and forecasting vehicle stocks using the trends of stochastic Gompertz diffusion models: The case of Spain," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 385-405, May.
  32. Sene, Seydina Ousmane, 2012. "Estimating the demand for gasoline in developing countries: Senegal," Energy Economics, Elsevier, vol. 34(1), pages 189-194.
  33. Hössinger, Reinhard & Link, Christoph & Sonntag, Axel & Stark, Juliane, 2017. "Estimating the price elasticity of fuel demand with stated preferences derived from a situational approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 154-171.
  34. Bonilla, David & Schmitz, Klaus E. & Akisawa, Atsushi, 2012. "Demand for mini cars and large cars; decay effects, and gasoline demand in Japan," Energy Policy, Elsevier, vol. 50(C), pages 217-227.
  35. Hojin Jung, 2017. "Investigating the unobserved heterogeneity in consumers’ sensitivity to the price of gasoline," Marketing Letters, Springer, vol. 28(3), pages 477-490, September.
  36. Martijn Brons & Peter Nijkamp & Eric Pels & Piet Rietveld, 2006. "A Meta-analysis of the Price Elasticity of Gasoline Demand. A System of Equations Approach," Tinbergen Institute Discussion Papers 06-106/3, Tinbergen Institute.
  37. Wadud, Zia, 2014. "New vehicle fuel economy in the UK: Impact of the recession and recent policies," Energy Policy, Elsevier, vol. 74(C), pages 215-223.
  38. Carol A. Dahl, 1986. "Gasoline Demand Survey," The Energy Journal, , vol. 7(1), pages 67-82, January.
  39. Shaw, Charles, 2020. "Econometric Analysis of Demand for Petrol in India, 1966-2019," MPRA Paper 104797, University Library of Munich, Germany.
  40. Leonid Galchynskyi, 2020. "Estimation of the price elasticity of petroleum products’ consumption in Ukraine," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 15(2), pages 315-339, June.
  41. Kayser, Hilke A., 2000. "Gasoline demand and car choice: estimating gasoline demand using household information," Energy Economics, Elsevier, vol. 22(3), pages 331-348, June.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.