IDEAS home Printed from https://ideas.repec.org/r/tky/fseres/2015cf985.html
   My bibliography  Save this item

The Influence Function of Semiparametric Estimators

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.
  2. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  3. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
  4. Aristide Houndetoungan & Abdoul Haki Maoude, 2024. "Inference for Two-Stage Extremum Estimators," Papers 2402.05030, arXiv.org, revised Nov 2024.
  5. Pereda-Fernández, Santiago, 2023. "Identification and estimation of triangular models with a binary treatment," Journal of Econometrics, Elsevier, vol. 234(2), pages 585-623.
  6. Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022. "Locally Robust Semiparametric Estimation," Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
  7. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2016. "Double/Debiased Machine Learning for Treatment and Causal Parameters," Papers 1608.00060, arXiv.org, revised Nov 2024.
  8. Yulia Kotlyarova & Marcia M. A. Schafgans & Victoria Zinde-Walsh, 2021. "Rates of Expansions for Functional Estimators," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 121-139, December.
  9. Martínez-Iriarte, Julián & Montes-Rojas, Gabriel & Sun, Yixiao, 2024. "Unconditional effects of general policy interventions," Journal of Econometrics, Elsevier, vol. 238(2).
  10. Isaiah Andrews & Matthew Gentzkow & Jesse M. Shapiro, 2020. "On the Informativeness of Descriptive Statistics for Structural Estimates," Econometrica, Econometric Society, vol. 88(6), pages 2231-2258, November.
  11. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  12. Undral Byambadalai & Tatsushi Oka & Shota Yasui, 2024. "Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction," Papers 2407.16037, arXiv.org.
  13. Undral Byambadalai, 2022. "Identification and Inference for Welfare Gains without Unconfoundedness," Papers 2207.04314, arXiv.org.
  14. Masahiro Kato & Masaaki Imaizumi & Takuya Ishihara & Toru Kitagawa, 2022. "Best Arm Identification with Contextual Information under a Small Gap," Papers 2209.07330, arXiv.org, revised Jan 2023.
  15. Vira Semenova, 2020. "Generalized Lee Bounds," Papers 2008.12720, arXiv.org, revised Feb 2023.
  16. Yuichi Kitamura, 2020. "A Comment on: “On the Informativeness of Descriptive Statistics for Structural Estimates” by Isaiah Andrews, Matthew Gentzkow, and Jesse M. Shapiro," Econometrica, Econometric Society, vol. 88(6), pages 2265-2269, November.
  17. Whitney K. Newey & James M. Robins, 2017. "Cross-fitting and fast remainder rates for semiparametric estimation," CeMMAP working papers CWP41/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  18. Rui Duan & C. Jason Liang & Pamela Shaw & Cheng Yong Tang & Yong Chen, 2020. "Missing at Random or Not: A Semiparametric Testing Approach," Papers 2003.11181, arXiv.org.
  19. Ruoyao Shi, 2021. "An Averaging Estimator for Two Step M Estimation in Semiparametric Models," Working Papers 202105, University of California at Riverside, Department of Economics.
  20. Aristide Houndetoungan & Abdoul Haki Maoude, 2024. "Inference for Two-Stage Extremum Estimators," THEMA Working Papers 2024-01, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
  21. Anton Bobrov & James Traina, 2024. "The beginning of the trend: Interest rates, profits, and markups," Economics Bulletin, AccessEcon, vol. 44(3), pages 1024-1033.
  22. Chen, Jiafeng & Ritzwoller, David M., 2023. "Semiparametric estimation of long-term treatment effects," Journal of Econometrics, Elsevier, vol. 237(2).
  23. Riccardo D'Adamo, 2021. "Orthogonal Policy Learning Under Ambiguity," Papers 2111.10904, arXiv.org, revised Dec 2022.
  24. Yizhen Xu & Numair Sani & AmirEmad Ghassami & Ilya Shpitser, 2021. "Multiply Robust Causal Mediation Analysis with Continuous Treatments," Papers 2105.09254, arXiv.org, revised Oct 2024.
  25. Liu, Lin & Mukherjee, Rajarshi & Robins, James M., 2024. "Assumption-lean falsification tests of rate double-robustness of double-machine-learning estimators," Journal of Econometrics, Elsevier, vol. 240(2).
  26. Yu-Chin Hsu & Martin Huber & Yu-Min Yen, 2023. "Doubly Robust Estimation of Direct and Indirect Quantile Treatment Effects with Machine Learning," Papers 2307.01049, arXiv.org.
  27. Juan Carlos Escanciano & Joel Robert Terschuur, 2022. "Machine Learning Inference on Inequality of Opportunity," Papers 2206.05235, arXiv.org, revised Oct 2023.
  28. Jens Klooster & Mikhail Zhelonkin, 2024. "Outlier robust inference in the instrumental variable model with applications to causal effects," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 86-106, January.
  29. Victor Quintas-Martinez, 2022. "Finite-Sample Guarantees for High-Dimensional DML," Papers 2206.07386, arXiv.org.
  30. David M. Ritzwoller & Vasilis Syrgkanis, 2024. "Simultaneous Inference for Local Structural Parameters with Random Forests," Papers 2405.07860, arXiv.org, revised Sep 2024.
  31. Whitney K. Newey & James M. Robins, 2017. "Cross-fitting and fast remainder rates for semiparametric estimation," CeMMAP working papers 41/17, Institute for Fiscal Studies.
  32. Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2020. "Deep Learning for Individual Heterogeneity: An Automatic Inference Framework," Papers 2010.14694, arXiv.org, revised Jul 2021.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.